首页 > 代码库 > hdu--5155Harry And Magic Box(组合数+容斥原理)
hdu--5155Harry And Magic Box(组合数+容斥原理)
Harry And Magic Box
Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64uAppoint description:
Description
One day, Harry got a magical box. The box is made of n*m grids. There are sparking jewel in some grids. But the top and bottom of the box is locked by amazing magic, so Harry can’t see the inside from the top or bottom. However, four sides of the box are transparent, so Harry can see the inside from the four sides. Seeing from the left of the box, Harry finds each row is shining(it means each row has at least one jewel). And seeing from the front of the box, each column is shining(it means each column has at least one jewel). Harry wants to know how many kinds of jewel’s distribution are there in the box.And the answer may be too large, you should output the answer mod 1000000007.
Input
There are several test cases.
For each test case,there are two integers n and m indicating the size of the box. $0 \leq n, m \leq 50$.
For each test case,there are two integers n and m indicating the size of the box. $0 \leq n, m \leq 50$.
Output
For each test case, just output one line that contains an integer indicating the answer.
Sample Input
1 1 2 2 2 3
Sample Output
1 7 25
Hint
There are 7 possible arrangements for the second test case. They are: 11 11 11 10 11 01 10 11 01 11 01 10 10 01 Assume that a grids is ‘1‘ when it contains a jewel otherwise not.
题目大意在n*m的矩阵内每一行每一列都有钻石,问钻石分布的种类?
在n*m的矩阵中,假设每一行都存在,对于每一行设i为有i列不存在钻石,那么共有C(m,i)种排列。
对于其他的m-i列中可以放也可以不放,但是要排除全都不放的情况,得到2^(m-i) - 1种,再加上n行得到(2^(m-i)-1)^n
得到f(i) = C(m,i) * (2^(m-i)-1)^n ;
容斥原理排除多余的 f(0) - f(1) + f(2)....f(n) ;
#include <cstdio> #include <cstring> #include <algorithm> using namespace std ; #define MOD 1000000007 #define LL long long LL c[60][60] , num[60][60] , k[60] ; int main() { int i , j , n , m ; memset(num,0,sizeof(num)) ; for(i = 0 ; i <= 50 ; i++) num[i][0] = num[0][i] = 1 ; k[0] = 1 ; for(i = 0 ; i <= 50 ; i++) c[i][0] = 1 ; for(i = 1 ; i <= 50 ; i++) { k[i] = k[i-1] * 2 ; k[i] %= MOD ; } for(i = 1 ; i <= 50 ; i++) { for(j = 1 ; j < i ; j++) { c[i][j] = c[i-1][j-1] + c[i-1][j] ; c[i][j] %= MOD ; } c[i][i] = 1 ; } while(scanf("%d %d", &n, &m) != EOF ) { if( num[n][m] == 0 ) { int temp = 1 ; LL ans = 0 , s ; for(i = 0 ; i <= m ; i++) { s = c[m][i] ; for(j = 1 ; j <= n ; j++) { s *= ( k[m-i]-1 ) ; s %= MOD ; } ans += temp * s ; ans %= MOD ; temp = -temp ; } if( ans < 0 ) ans += MOD ; num[n][m] = num[m][n] = ans ; } printf("%lld\n", num[n][m]) ; } return 0; }
hdu--5155Harry And Magic Box(组合数+容斥原理)
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。