首页 > 代码库 > HDU4135(容斥原理)

HDU4135(容斥原理)

Co-prime

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 4090    Accepted Submission(s): 1619


Problem Description
Given a number N, you are asked to count the number of integers between A and B inclusive which are relatively prime to N.
Two integers are said to be co-prime or relatively prime if they have no common positive divisors other than 1 or, equivalently, if their greatest common divisor is 1. The number 1 is relatively prime to every integer.
 

 

Input
The first line on input contains T (0 < T <= 100) the number of test cases, each of the next T lines contains three integers A, B, N where (1 <= A <= B <= 1015) and (1 <=N <= 109).
 

 

Output
For each test case, print the number of integers between A and B inclusive which are relatively prime to N. Follow the output format below.
 

 

Sample Input
2
1 10 2
3 15 5
 

 

Sample Output
Case #1: 5
Case #2: 10
 
思路:求1~m中与n互素的数的个数。
#include <cstdio>#include <vector>using namespace std;typedef long long LL;LL sieve(LL m,LL n){    vector<LL> divisor;    for(LL i=2;i*i<=n;i++)    {        if(n%i==0)        {            divisor.push_back(i);            while(n%i==0)    n/=i;        }    }    if(n>1)    divisor.push_back(n);    LL ans=0;    for(LL mark=1;mark<(1<<divisor.size());mark++)    {        LL odd=0;        LL mul=1;        for(LL i=0;i<divisor.size();i++)        {            if(mark&(1<<i))            {                mul*=divisor[i];                odd++;            }        }        LL cnt=m/mul;        if(odd&1)    ans+=cnt;        else ans-=cnt;    }    return m-ans;}LL a,b,n;int main(){    int T;    scanf("%d",&T);    for(int cas=1;cas<=T;cas++)    {        scanf("%lld%lld%lld",&a,&b,&n);        LL res=sieve(b,n)-sieve(a-1,n);        printf("Case #%d: ",cas);        printf("%lld\n",res);    }    return 0;}

 

HDU4135(容斥原理)