首页 > 代码库 > 容斥原理学习(Hdu 4135,Hdu 1796)

容斥原理学习(Hdu 4135,Hdu 1796)

题目链接Hdu4135

Co-prime

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1412    Accepted Submission(s): 531


Problem Description
Given a number N, you are asked to count the number of integers between A and B inclusive which are relatively prime to N.
Two integers are said to be co-prime or relatively prime if they have no common positive divisors other than 1 or, equivalently, if their greatest common divisor is 1. The number 1 is relatively prime to every integer.
 

 

Input
The first line on input contains T (0 < T <= 100) the number of test cases, each of the next T lines contains three integers A, B, N where (1 <= A <= B <= 1015) and (1 <=N <= 109).
 

 

Output
For each test case, print the number of integers between A and B inclusive which are relatively prime to N. Follow the output format below.
 

 

Sample Input
21 10 23 15 5
 

 

Sample Output
Case #1: 5Case #2: 10
Hint
In the first test case, the five integers in range [1,10] which are relatively prime to 2 are {1,3,5,7,9}.

题意:求区间[a, b]内与n互质的数的个数。

思路:如果某个数与n互质,那么这个数一定和n没有公共因子。所以题目就转化为有多少个数与n无公共因子。

可以通过求区间内有多少个数与n存在公共因子来得到答案。筛去2的倍数,3的倍数,5的倍数。。。容斥就可以啦。

Accepted Code:

 1 /************************************************************************* 2     > File Name: 4135.c 3     > Author: Stomach_ache 4     > Mail: sudaweitong@gmail.com 5     > Created Time: 2014年09月05日 星期五 16时33分45秒 6     > Propose:  7  ************************************************************************/ 8 #include <cstdio> 9 #include <vector>10 #include <cstring>11 #include <cstdlib>12 #include <iostream>13 using namespace std;14 /*Let‘s fight!!!*/15 16 typedef long long LL;17 18 LL gcd(LL a, LL b) {19     if (!b) return a;20     return gcd(b, a % b);21 }22 23 LL cal(const vector<int> &var, const LL &n) {24       LL sz = var.size(), res = 0;25       for (LL i = 1; i < (1<<sz); i++) {26           int num = 0;27           for (LL j = i; j != 0; j >>= 1) if (j & 1) num++;28           LL lcm = 1;29           for (LL j = 0; j < sz; j++) {30               if ((i >> j) & 1) lcm = lcm / gcd(lcm, var[j]) * var[j];31               if (lcm > n) break;32           }33           if (num % 2 == 0) res -= n / lcm; 34           else res += n / lcm;35       }36 37       return res;38 }39 40 int main(void) {41     ios::sync_with_stdio(false);42     int T, cas = 1;43     cin >> T;44     while (T--) {45         LL a, b, n, x;46         cin >> a >> b >> n;47 48         vector<int> var;49         x = n;50         for (int i = 2; i * i <= x; i++) {51               if (x % i == 0) {52                 var.push_back(i);53                 while (x % i == 0) x /= i;54             }55         }56         if (x > 1) var.push_back(x);57 58         LL res = b - a + 1 - cal(var, b) + cal(var, a - 1);59         cout << "Case #" << cas++ << ": " << res << endl;60     }61 62     return 0;63 }

 

题目链接Hdu1796

How many integers can you find

Time Limit: 12000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 4205    Accepted Submission(s): 1198


Problem Description
  Now you get a number N, and a M-integers set, you should find out how many integers which are small than N, that they can divided exactly by any integers in the set. For example, N=12, and M-integer set is {2,3}, so there is another set {2,3,4,6,8,9,10}, all the integers of the set can be divided exactly by 2 or 3. As a result, you just output the number 7.

 

Input
  There are a lot of cases. For each case, the first line contains two integers N and M. The follow line contains the M integers, and all of them are different from each other. 0<N<2^31,0<M<=10, and the M integer are non-negative and won’t exceed 20.

 

Output
  For each case, output the number.

 

Sample Input
12 22 3

 

Sample Output
7
和上题一样。。。
Accepted Code:
/*************************************************************************    > File Name: 1796_dfs.cpp    > Author: Stomach_ache    > Mail: sudaweitong@gmail.com    > Created Time: 2014年09月06日 星期六 08时28分01秒    > Propose:  ************************************************************************/#include <cmath>#include <string>#include <cstdio>#include <fstream>#include <cstring>#include <iostream>#include <algorithm>using namespace std;/*Let‘s fight!!!*/typedef long long LL;int a[15], n, m;LL gcd(LL a, LL b) {      if (!b) return a;    return gcd(b, a % b);}void dfs(LL now, int num, LL lcm, LL &res) {      lcm = lcm / gcd(lcm, a[now]) * a[now];    if (num % 2 == 0) res -= n / lcm;    else res += n / lcm;    for (int i = now + 1; i < m; i++)           dfs(i, num + 1, lcm, res);}int main(void) {      ios::sync_with_stdio(false);    while (cin >> n >> m) {          int cnt = 0;        for (int i = 0; i < m; i++) {              int x;            cin >> x;            if (x > 0) a[cnt++] = x;        }        m = cnt;        LL res = 0;        n--;        for (int i = 0; i < m; i++) {              dfs(i, 1, a[i], res);        }        cout << res << endl;    }} //位运算实现/*************************************************************************    > File Name: 1796.cpp    > Author: Stomach_ache    > Mail: sudaweitong@gmail.com    > Created Time: 2014年09月05日 星期五 21时32分48秒    > Propose:  ************************************************************************/#include <cmath>#include <string>#include <cstdio>#include <vector>#include <fstream>#include <cstring>#include <iostream>#include <algorithm>using namespace std;/*Let‘s fight!!!*/typedef long long LL;int a[12];LL gcd(LL a, LL b) {    if (!b) return a;    return gcd(b, a % b);}int main(void) {    ios::sync_with_stdio(false);    LL n, m;    while (cin >> n >> m) {        int d = 0;        for (int i = 0; i < m; i++) {            int x;            cin >> x;            if (x > 0 && x <= n) a[d++] = x;        }        n--;        LL res = 0;        for (LL i = 1; i < (1 << d); i++) {              int num = 0;            for (LL j = i; j != 0; j >>= 1) num += j & 1;            LL lcm = 1;            for (LL j = 0; j < d; j++) {                  if ((i >> j) & 1) {                    lcm = lcm / gcd(lcm, a[j]) * a[j];                    if (lcm > n) break;                }            }            if (num % 2 == 0) res -= n / lcm;            else res += n / lcm;        }            cout << res << endl;    }    return 0;}

 

容斥原理学习(Hdu 4135,Hdu 1796)