首页 > 代码库 > hdu1796--How many integers can you find(容斥原理)
hdu1796--How many integers can you find(容斥原理)
How many integers can you find
Time Limit:5000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64uAppoint description:
Description
Now you get a number N, and a M-integers set, you should find out how many integers which are small than N, that they can divided exactly by any integers in the set. For example, N=12, and M-integer set is {2,3}, so there is another set {2,3,4,6,8,9,10}, all the integers of the set can be divided exactly by 2 or 3. As a result, you just output the number 7.
Input
There are a lot of cases. For each case, the first line contains two integers N and M. The follow line contains the M integers, and all of them are different from each other. 0<N<2^31,0<M<=10, and the M integer are non-negative and won’t exceed 20.
Output
For each case, output the number.
Sample Input
12 2 2 3
Sample Output
7
题目大意:给出一个n和一个集合,m个数,问在1到n内 能被m中的数正除的有多少?
可以理解为在1到n内,是m中的数的倍数的数有多少?
在容斥原理中,用二进制数表示第i个数取没取,如果取了奇数个数,加上。 取了偶数个数,减去
#include <cstdio> #include <cstring> #include <algorithm> using namespace std ; #define LL long long LL a[12] ; LL n , m , k , i , j , cnt , num , ans ; LL gcd(LL x,LL y) { return x == 0 ? y : gcd(y%x,x) ; } int main() { while(scanf("%lld %lld", &n, &m) != EOF) { ans = 0 ; for(i = 0 ; i < m ; i++) { scanf("%lld", &a[i]) ; if( a[i] == 0 ) { i-- ; m-- ; } } cnt = 1 << m ; for(i = 1 ; i < cnt ; i++) { k = 1 ; num = 0 ; for(j = 0 ; j < m ; j++) { if( 1<<j & i ) { k = a[j] * k / ( gcd(k,a[j]) ) ; num++ ; } } if( num % 2 ) { ans += n/k ; if( n % k == 0 ) ans-- ; } else { ans -= n/k ; if(n%k == 0) ans++ ; } } printf("%lld\n", ans) ; } return 0; }
hdu1796--How many integers can you find(容斥原理)
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。