首页 > 代码库 > 最短路之Bellman-Ford算法
最短路之Bellman-Ford算法
说明:
Dijkstra算法是处理单源最短路径的有效算法,但它局限于边的权值非负的情况,若图中出现权值为负的边,Dijkstra算法就会失效,求出的最短路径就可能是错的。
这时候,就需要使用其他的算法来求解最短路径,Bellman-Ford算法就是其中最常用的一个。
适用条件&范围:
单源最短路径(从源点s到其它所有顶点v);
有向图&无向图(无向图可以看作(u,v),(v,u)同属于边集E的有向图);
边权可正可负(如有负权回路输出错误提示);
思想:
我们规定节点都有一个key值,key值记录的是开始节点到本节点的最小距离,每个节点也都有一个p指针指向他的前驱节点。这里我们规定一个操作叫做松弛操作,我们的算法也是最终基于这个操作的。松弛操作就是去更新key的值。
节点B的key值为8,表示从开始节点到B节点之前的最短估计距离是8,而节点A的key值3,是说从开始节点到A节点最短估计是3,当我们发现这个边时,从A到B的距离比较近,所以我们去更新B的key值,同时把B的前驱节点设置成A。这个过程就是松弛操作。
我们说的Bellman-Ford算法是最简单的算法,就是从开始节点开始循环每一条边,对他进行松弛操作。最后得到的路径就是最短路径。过程如图:
算法步骤:
1.初始化:将除源点外的所有顶点的最短距离估计值 d[v] ← +∞, d[s] ←0;
2.迭代求解:反复对边集E中的每条边进行松弛操作,使得顶点集V中的每个顶点v的最短距离估计值逐步逼近其最短距离;(运行|v|-1次)
3.检验负权回路:判断边集E中的每一条边的两个端点是否收敛。如果存在未收敛的顶点,则算法返回false,表明问题无解;否则算法返回true,并且从源点可达的顶点v的最短距离保存在 d[v]中。
代码:
#include<iostream> #include<cstdio> using namespace std; #define MAX 0x3f3f3f3f #define N 1010 int nodenum, edgenum, original; //点,边,起点 typedef struct Edge //边 { int u, v; int cost; } Edge; Edge edge[N]; int dis[N], pre[N]; bool Bellman_Ford() { for(int i = 1; i <= nodenum; ++i) //初始化,起点本身赋值为0,其余赋值为最大 dis[i] = (i == original ? 0 : MAX); for(int i = 1; i <= nodenum - 1; ++i) for(int j = 1; j <= edgenum; ++j) if(dis[edge[j].v] > dis[edge[j].u] + edge[j].cost) //松弛(顺序一定不能反) { dis[edge[j].v] = dis[edge[j].u] + edge[j].cost; pre[edge[j].v] = edge[j].u; } bool flag = 1; //判断是否含有负权回路 for(int i = 1; i <= edgenum; ++i) if(dis[edge[i].v] > dis[edge[i].u] + edge[i].cost) { flag = 0; break; } return flag; } void print_path(int root) //打印最短路的路径(反向) { while(root != pre[root]) //前驱 { printf("%d-->", root); root = pre[root]; } if(root == pre[root]) printf("%d\n", root); } int main() { scanf("%d%d%d", &nodenum, &edgenum, &original);//输入点边起点,一般起点规定为1 pre[original] = original;//为了输出最短路用的,前驱为本身 for(int i = 1; i <= edgenum; ++i) { scanf("%d%d%d", &edge[i].u, &edge[i].v, &edge[i].cost);//有向图 } if(Bellman_Ford())//如果没有负权 for(int i = 1; i <= nodenum; ++i) //每个点最短路 { printf("%d\n", dis[i]); printf("Path:"); print_path(i); } else printf("have negative circle\n"); return 0; }
最短路之Bellman-Ford算法