首页 > 代码库 > uva 11645

uva 11645

Problem J
Bits 
Input: Standard Input

Output: Standard Output

 

bit is a binary digit, taking a logical value of either "1" or "0" (also referred to as "true" or "false" respectively).  And every decimal number has a binary representation which is actually a series of bits. If a bit of a number is “1” and it‘s next bit is also “1” then we can say that the number has a 1 adjacent bit. And you have to find out how many times this scenario occurs for all numbers up to N.

 

Examples:

            Number           Binary                         Adjacent Bits

            12                    1100                            1

            15                    1111                            3

            27                    11011                          2

 

Input

For each test case, you are given an integer number (0 <= N <= ((2^63)-2)), as described in the statement. The last test case is followed by a negative integer in a line by itself, denoting the end of input file.

 

Output

For every test case, print a line of the form “Case X: Y”, where X is the serial of output (starting from 1) and Y is the cumulative summation of all adjacent bits from 0 to N.

题意:

  给出定义 A(x) 为 x 的二进制表示中 11 的个数.

  请你求出 A(x) 的前缀和 S(x)

思路:

  如果真正理解了 uva 11038, 那么这道题应该差不多...

  分段考虑的话,就是当第 i 与 i-1 位 为1 的时候,

  左边 有.... 右边有......

  根据乘法原理, 直接乘起来就ok.

  再根据加法原理,直接加起来就是答案.

  由于答案比较大.所以采用两个数字压位的做法..(学到的好方法.)

  我的程序写得非常啰嗦.....不如再去看看别人的.

  

技术分享
 1 #include<cstdlib> 2 #include<cstdio> 3 #include<iostream> 4 #include<cstring> 5 using namespace std; 6 const long long lim = (long long)1e13; 7 typedef long long BIG[2]; 8 BIG ans; 9 long long n,x1,x2,x3,L;10 int kase;11 void add(BIG &a,long long b){12     a[1] += b; a[0] += a[1] / lim; a[1] %= lim;13 }14 int digit(long long x,int pos){ return (x & (1LL << pos)) != 0; }15 long long ext(long long n,long long st,long long ed){16     if(st > ed) return 0;17     n >>= st;18     return n & ((1LL << (ed - st + 1)) - 1);19 }20 int main()21 {22     freopen("bits.in","r",stdin);23     freopen("bits.out","w",stdout);24     while(scanf("%lld",&n), n >= 0){25         ans[0] = ans[1] = 0;26         for(L = 63; L > 0 && !digit(n,L); L--);27         int a = digit(n,L), b = digit(n,L-1);28         if(a == b && a == 1 && n != 3) add(ans, ext(n,0,L-2) + 1);29         a = digit(n,1), b = digit(n,0);30         add(ans, ext(n,2,L) + (a && b));31         for(int i = L-1; i >= 2; --i){32             a = digit(n,i), b = digit(n,i-1);33             x1 = ext(n,i+1,L), x2 = ext(n,0,i-2) + 1, x3 = (1LL << (i-1));34             add(ans,(x1 && a && b ? 1 : 0) * x2 + x1 * x3);35         }36         add(ans,0);37         printf("Case %d: ",++kase);38         if(ans[0]){39             printf("%lld",ans[0]);            40             printf("%013lld\n",ans[1]);41         }        42         else printf("%lld\n",ans[1]);43     }44     return 0;45 }
View Code

 

uva 11645