首页 > 代码库 > 决策树中的J48算法分析
决策树中的J48算法分析
J48原理:本来名称为C4.8,由于是Java实现的算法,再加上C4.8为商业收费算法。 其实J48是自上而下的,递归的分治策略,选择某个属性放置在根节点,为每个可能的属性值产生一个分支,将实例分成多个子集,每个子集对应一个根节点的分支,然后在每个分支上递归地重复这个过程。当所有实例有相同的分类时,停止。
问题是如何:如恶化选择根节点属性,建立分支呢?
例如:weather.nominal.arff
我们希望得到的是纯分裂,即分裂为纯节点,希望找到一个属性,它的一个节点全是yes,一个节点全是no,这是最好的情况,因为如果是混合节点则需要再次分裂
通过量化来确定能产生最纯子节点的属性---计算纯度(目标是得到最小的决策树)。而自上而下的树归纳法用到了一些启发式方法---产生纯节点的启发法是以信息论为基础的,即信息熵,以bits测量信息。
信息增益=分裂前分布的信息熵-分裂后分布的信息熵,选择信息增益最大的属性。
计算这四个属性的信息增益,如下图:
经过计算得到outlook、windy、humidity、temperature的信息增益分别为0.247bits、0.048bits、0.152bits、0.029bits,所以选择outlook为根节点。
计算举例
分裂前:Info(outlook)=entropy(outlook)=-9/14*lg(9/14)-5/14*lg(5/14)=0.940286
分裂后:Inf0a(outlook)=5/14*Info(D1)+4/14*Info(D2)+5/14*Info(D3)=0.693535
Info(D1)=-2/5*lg(2/5)-3/5*lg(3/5)=0.9709490 , Info(D2)=0
Info(D3)=-3/5*lg(3/5)-2/5*lg(2/5)
Gain(outlook)=Info(outlook)-Inf0a(outlook)=0.247bits
决策树中的J48算法分析