首页 > 代码库 > (差分约束) hdu 1384

(差分约束) hdu 1384

Intervals

Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 3038    Accepted Submission(s): 1118


Problem Description
You are given n closed, integer intervals [ai, bi] and n integers c1, ..., cn.

Write a program that:

> reads the number of intervals, their endpoints and integers c1, ..., cn from the standard input,

> computes the minimal size of a set Z of integers which has at least ci common elements with interval [ai, bi], for each i = 1, 2, ..., n,

> writes the answer to the standard output
 

 

Input
The first line of the input contains an integer n (1 <= n <= 50 000) - the number of intervals. The following n lines describe the intervals. The i+1-th line of the input contains three integers ai, bi and ci separated by single spaces and such that 0 <= ai <= bi <= 50 000 and 1 <= ci <= bi - ai + 1.

Process to the end of file.

 

 

Output
The output contains exactly one integer equal to the minimal size of set Z sharing at least ci elements with interval [ai, bi], for each i = 1, 2, ..., n.
 

 

Sample Input
53 7 38 10 36 8 11 3 110 11 1
 

 

Sample Output
6
 

 

Author
1384
 

 

#include<iostream>#include<cstdio>#include<cstring>#include<cstdlib>#include<string>#include<cmath>#include<algorithm>#include<vector>#include<queue>using namespace std;#define INF 0xfffffffvector<int> e[50001],w[50001];queue<int> q;int n,dist[50001],r,l,vis[50001];void addedge(int a,int b,int c){      e[b].push_back(a);      w[b].push_back(c);}void SPFA(){      int x;      vis[r]=1;      q.push(r);      while(!q.empty())      {          x=q.front(),q.pop();          vis[x]=0;          for(int i=0;i<e[x].size();i++)          {                if(dist[x]+w[x][i]<dist[e[x][i]])                {                        dist[e[x][i]]=dist[x]+w[x][i];                        if(!vis[e[x][i]])                        {                              vis[e[x][i]]=1;                              q.push(e[x][i]);                        }                }          }      }}int main(){      while(scanf("%d",&n)!=EOF)      {            int a,b,c;            l=INF,r=0;            for(int i=0;i<50001;i++)            {                  vis[i]=0;                  e[i].clear(),w[i].clear();                  dist[i]=INF;            }            for(int i=0;i<n;i++)            {                  scanf("%d%d%d",&a,&b,&c);                  addedge(a-1,b,-c);                  if(a<l) l=a;                  if(b>r) r=b;            }            l--;            for(int i=l;i<r;i++)            {                  addedge(i+1,i,1);                  addedge(i,i+1,0);            }            dist[r]=0;            while(!q.empty()) q.pop();            SPFA();            printf("%d\n",-dist[l]);      }      return 0;}

  

(差分约束) hdu 1384