首页 > 代码库 > [HDU1712]ACboy needs your help

[HDU1712]ACboy needs your help

题目大意:ACboy有n门学科,每门学科研究1~m天能获得不同的价值。他总共有m天,求最多能获得多少价值。

解题思路:典型的分组背包问题。

 

 

 

这个问题变成了每组物品有若干种策略:是选择本组的某一件,还是一件都不选。也就是说设f[k][v]表示前k组物品花费费用v能取得的最大权值,则有:

f[k][v]=max{f[k-1][v],f[k-1][v-c[i]]+w[i]|物品i属于组k}

 

使用一维数组的伪代码如下:

for 所有的组k
    for v=V..0
        for 所有的i属于组k
            f[v]=max{f[v],f[v-c[i]]+w[i]}

注意这里的三层循环的顺序,甚至在本文的第一个beta版中我自己都写错了。“for v=V..0”这一层循环必须在“for 所有的i属于组k”之外。这样才能保证每一组内的物品最多只有一个会被添加到背包中。

 

另外,显然可以对每组内的物品应用P02(完全背包问题)中“一个简单有效的优化”。

小结

分组的背包问题将彼此互斥的若干物品称为一个组,这建立了一个很好的模型。不少背包问题的变形都可以转化为分组的背包问题(例如P07(有依赖的背包问题)),由分组的背包问题进一步可定义“泛化物品”的概念,十分有利于解题。

 

 

以上摘自《背包九讲》,直接套用即可。

C++ Code:

 

#include<cstdio>#include<cstring>int a[102][102],n,m,f[102];int main(){	while(scanf("%d%d",&n,&m)&&n&&m){		memset(f,0,sizeof(f));		for(int i=1;i<=n;++i)		for(int j=1;j<=m;++j)scanf("%d",&a[i][j]);		for(int i=1;i<=n;++i)		for(int j=m;j>=0;--j)		for(int k=1;k<=j;++k)		if(f[j]<f[j-k]+a[i][k])f[j]=f[j-k]+a[i][k];		printf("%d\n",f[m]);	}	return 0;}

 

[HDU1712]ACboy needs your help