首页 > 代码库 > MobileNets: Open-Source Models for Efficient On-Device Vision

MobileNets: Open-Source Models for Efficient On-Device Vision

https://research.googleblog.com/2017/06/mobilenets-open-source-models-for.html

 

 Wednesday, June 14, 2017 
 
技术分享
Example use cases include detection, fine-grain classification, attributes and geo-localization.

Model Checkpoint
Million MACs
Million Parameters
Top-1 Accuracy
Top-5 Accuracy
MobileNet_v1_1.0_224
569
4.24
70.7
89.5
MobileNet_v1_1.0_192
418
4.24
69.3
88.9
MobileNet_v1_1.0_160
291
4.24
67.2
87.5
MobileNet_v1_1.0_128
186
4.24
64.1
85.3
MobileNet_v1_0.75_224
317
2.59
68.4
88.2
MobileNet_v1_0.75_192
233
2.59
67.4
87.3
MobileNet_v1_0.75_160
162
2.59
65.2
86.1
MobileNet_v1_0.75_128
104
2.59
61.8
83.6
MobileNet_v1_0.50_224
150
1.34
64.0
85.4
MobileNet_v1_0.50_192
110
1.34
62.1
84.0
MobileNet_v1_0.50_160
77
1.34
59.9
82.5
MobileNet_v1_0.50_128
49
1.34
56.2
79.6
MobileNet_v1_0.25_224
41
0.47
50.6
75.0
MobileNet_v1_0.25_192
34
0.47
49.0
73.6
MobileNet_v1_0.25_160
21
0.47
46.0
70.7
MobileNet_v1_0.25_128
14
0.47
41.3
66.2
Choose the right MobileNet model to fit your latency and size budget. The size of the network in memory and on disk is proportional to the number of parameters. The latency and power usage of the network scales with the number of Multiply-Accumulates (MACs) which measures the number of fused Multiplication and Addition operations. Top-1 and Top-5 accuracies are measured on the ILSVRC dataset.
 

MobileNets: Open-Source Models for Efficient On-Device Vision