首页 > 代码库 > UVA Bicoloring (交叉染色)
UVA Bicoloring (交叉染色)
In 1976 the ``Four Color Map Theorem" was proven with the assistance of a computer. This theorem states that every map can be colored using only four colors, in such a way that no region is colored using the same color as a neighbor region.
Bicoloring Here you are asked to solve a simpler similar problem. You have to decide whether a given arbitrary connected graph can be bicolored. That is, if one can assign colors (from a palette of two) to the nodes in such a way that no two adjacent nodes have the same color. To simplify the problem you can assume:
- no node will have an edge to itself.
- the graph is nondirected. That is, if a node a is said to be connected to a node b, then you must assume that b is connected to a.
- the graph will be strongly connected. That is, there will be at least one path from any node to any other node.
Input
The input consists of several test cases. Each test case starts with a line containing the number n ( 1 < n < 200) of different nodes. The second line contains the number of edges l. After this, l lines will follow, each containing two numbers that specify an edge between the two nodes that they represent. A node in the graph will be labeled using a number a ( ).An input with n = 0 will mark the end of the input and is not to be processed.
Output
You have to decide whether the input graph can be bicolored or not, and print it as shown below.Sample Input
3 3 0 1 1 2 2 0 9 8 0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0Sample Output
NOT BICOLORABLE. BICOLORABLE.
Miguel Revilla
2000-08-21
题意:输入n个点,m组数据,然后有两种不同的颜色,n个点可能相互相邻。要求相邻的两个点不能用一种颜色,问是否可以做到,可以做到输出
代码:
#include<iostream> #include<algorithm> #include<stdio.h> #include<string.h> #include<stdlib.h> #include<queue> #include<math.h> using namespace std; int n,m; int map[205][205]; int v[205]; void BFS() { int p[100010]; for(int i=0;i<n;i++) { p[i] = -1; } memset(v,0,sizeof(v)); queue<int>q; int flag = 0; int t,f; t = 0; p[t] = 0; q.push(t); v[t] = 1; while(!q.empty()) { t = q.front(); q.pop(); for(int i=0;i<n;i++) { if(map[t][i] == 1) { if(p[i] == -1) { p[i] = (int)fabs(p[t] - 1); q.push(i); } else if(p[t] == p[i]) { flag = 1; break; } } } if(flag == 1) { break; } } if(flag == 1) { printf("NOT BICOLORABLE.\n"); } else { printf("BICOLORABLE.\n"); } } int main() { while(scanf("%d",&n)!=EOF) { if(n == 0) { break; } for(int i=0;i<n;i++) { for(int j=0;j<n;j++) { map[i][j] = 0; } } scanf("%d",&m); int a,b; for(int i=0;i<m;i++) { scanf("%d%d",&a,&b); map[a][b] = 1; map[b][a] = 1; } BFS(); } return 0; }
UVA Bicoloring (交叉染色)
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。