首页 > 代码库 > (每日算法)Leetcode--Edit Distance(编辑距离)
(每日算法)Leetcode--Edit Distance(编辑距离)
简单地说,就是仅通过插入(insert)、删除(delete)和替换(substitute)个操作将一个字符串s1变换到另一个字符串s2的最少步骤数。熟悉算法的同学很容易知道这是个动态规划问题。
其实一个替换操作可以相当于一个delete+一个insert,所以我们将权值定义如下:
I (insert):1
D (delete):1
S (substitute):1
示例:
intention->execution
Minimal edit distance:
delete i ; n->e ; t->x ; insert c ; n->u 求和得cost=5
Edit Distance用于衡量两个strings之间的相似性。
两个strings之间的Minimum edit distance是指把其中一个string通过编辑(包括插入,删除,替换操作)转换为另一个string的最小操作数。
如上图所示,d(deletion)代表删除操作,s(substitution)代表替换操作,i(insertion)代表插入操作。
(为了简单起见,后面的Edit Distance 简写为ED)
如果每种操作的cost(成本)为1,那么ED = 5.
我们定义D(i,j)为 X 的前i个字符 X[1...i] 与 Y 的前j个字符 Y[1...j] 之间的距离,其中0<i<n, 0<j<m,因此X与Y的距离可以用D(n,m)来表示。
假如我们想要计算最终的D(n,m),那么可以从头开始,先计算D(i, j) (i和j从1开始)的值,然后基于前面的结果计算更大的D(i, j),直到最终求得D(n,m)。
如果能想到是动态规划问题就不难解决了。
class Solution { public: int minDistance(string word1, string word2) { const size_t n = word1.size(); const size_t m = word2.size(); int f[n + 1][m + 1]; for(size_t i = 0; i <= n; i++) f[i][0] = i; for(size_t j = 0; j <= m; j++) f[0][j] = j; for(size_t i = 1; i <= n; i++) { for(size_t j = 1; j <= m; j++) { if(word1[i - 1] == word2[j - 1]) f[i][j] = f[i - 1][j - 1]; else { int mn = min(f[i - 1][j], f[i][j - 1]); f[i][j] = min(f[i - 1][j - 1], mn) + 1; } } } return f[n][m]; } };
同样,对于动态规划问题,我们不想使用O(m*n)的空间复杂度。
可以通过滚动数组的形式,将空间复杂度降至O(min(m, n))
参考网址:编辑距离-自然语言处理 编辑距离-张大神
(每日算法)Leetcode--Edit Distance(编辑距离)
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。