首页 > 代码库 > Fp关联规则算法计算置信度及MapReduce实现思路
Fp关联规则算法计算置信度及MapReduce实现思路
说明:參考Mahout FP算法相关相关源代码。
算法project能够在FP关联规则计算置信度下载:(仅仅是单机版的实现,并没有MapReduce的代码)
使用FP关联规则算法计算置信度基于以下的思路:
1. 首先使用原始的FP树关联规则挖掘出全部的频繁项集及其支持度;这里须要注意,这里是输出全部的频繁项集,并没有把频繁项集合并,所以须要改动FP树的相关代码,在某些步骤把全部的频繁项集输出;(ps:參考Mahout的FP树单机版的实现,进行了改动,暂不确定是否已经输出了全部频繁项集)
为举例简单,能够以以下的数据为例(原始事务集):
牛奶,鸡蛋,面包,薯片 鸡蛋,爆米花,薯片,啤酒 鸡蛋,面包,薯片 牛奶,鸡蛋,面包,爆米花,薯片,啤酒 牛奶,面包,啤酒 鸡蛋,面包,啤酒 牛奶,面包,薯片 牛奶,鸡蛋,面包,黄油,薯片 牛奶,鸡蛋,黄油,薯片
2. 得到全部的频繁项集例如以下:
0,2,3=4 2,4=3 0,1,2,3=3 3=6 2=7 1,2=5 1=7 0=7 0,3=5 0,2=6 0,1=5 4=4 0,1,2=4 0,1,3=4 1,3=5 1,4=3上面的频繁项集中,等号后面的是支持度;每条频繁项集显示的是经过编码的,编码的规则例如以下:{薯片=0, 牛奶=3, 鸡蛋=2, 面包=1, 啤酒=4}。同一时候。能够看到上面的频繁项集中的编码是依照顺序排列的(从小到大);
计算每条频繁项集的置信度(仅仅计算2项和2项以上的频繁项集):
1) 对于频繁n项集,查找其前向(前向定义为前面n-1项集。比方频繁项集:0,2,3那么其前向为0,2)的支持度。假设频繁n项集存在。那么其前向(频繁n-1项集)必定存在(假设频繁项集是全部的频繁项集的话,这个规则一定是成立的);
2)使用n项集的支持度除以n项集的前向的支持度就可以得到n项集的置信度。
3. 依照2中的计算方法是能够计算全部的频繁项集的置信度的。可是这里有个问题:仅仅能计算比方0,2,3这个频繁项集的置信度,而不能计算0,3,2这个频繁项集的置信度(FP算法中频繁项集0,2,3和0,3,2是一样的频繁项集。可是计算置信度的时候就会不一样);
4. 针对3的问题,能够给出以下的解决方式。
// generateTopKFrequentPatterns(new TransactionIterator<A>( // transactionStream, attributeIdMapping), attributeFrequency, // minSupport, k, reverseMapping.size(), returnFeatures, // new TopKPatternsOutputConverter<A>(output, reverseMapping), // updater);改动为以下的代码:
generateTopKFrequentPatterns(new TransactionIterator<A>( transactionStream, attributeIdMapping), attributeFrequency, minSupport, k, reverseMapping.size(), returnFeatures,reverseMapping );这种改动在FPTree里面有非常多,就不一一赘述,详情參考本文源代码下载的project;
addFrequentPatternMaxHeap(frequentPatterns);
这种方法的详细代码为:
/** * 存储全部频繁项集 * @param patternsOut */ private static void addFrequentPatternMaxHeap(FrequentPatternMaxHeap patternsOut){ String[] pStr=null; // 这里的Pattern有问题。临时使用字符串解析 for(Pattern p:patternsOut.getHeap()){ pStr=p.toString().split("-"); if(pStr.length<=0){ continue; } // 对字符串进行下处理,这样能够降低存储 pStr[0]=pStr[0].replaceAll(" ", ""); pStr[0]=pStr[0].substring(1,pStr[0].length()-1); if(patterns.containsKey(pStr[0])){ if(patterns.get(pStr[0])<p.support()){// 仅仅取支持度最大的 patterns.remove(pStr[0]); patterns.put(pStr[0], p.support()); } }else{ patterns.put(pStr[0], p.support()); } } }这里假定这种操作能够得到全部的频繁项集。而且存入到了patterns静态map变量中。
/** * 依据排序频繁相机支持度 生成多频繁项集支持度 */ public void generateFatPatterns(){ int[] patternInts=null; for(String p :patterns.keySet()){ patternInts = getIntsFromPattern(p); if(patternInts.length==1){// 针对频繁一项集 fatPatterns.put(String.valueOf(patternInts[0]), patterns.get(p)); }else{ putInts2FatPatterns(patternInts,patterns.get(p)); } } } /** * 把数组中的每一项作为后向进行输出,加入到fatpatterns中 * @param patternInts * @param support */ private void putInts2FatPatterns(int[] patternInts, Long support) { // TODO Auto-generated method stub String patternStr =Ints2Str(patternInts); fatPatterns.put(patternStr, support);// 处理最后一个后向 for(int i=0;i<patternInts.length-1;i++){// 最后一个后向在前面已经处理 // 不能使用同一个数组 patternStr=Ints2Str(swap(patternInts,i,patternInts.length-1)); fatPatterns.put(patternStr, support); } }
public void savePatterns(String output,Map<String,Long> map){ // 清空patternsMap patternsMap.clear(); String preItem=null; for(String p:map.keySet()){ // 单项没有前向。不用找 if(p.lastIndexOf(",")==-1){ continue; } // 找出前向 preItem = p.substring(0, p.lastIndexOf(",")); if(map.containsKey(preItem)){ // patterns.get(p) 支持度,patterns.get(preItem)前向支持度 patternsMap.put(p, map.get(p)*1.0/map.get(preItem)); } } FPTreeDriver.createFile(patternsMap, output); }因为把频繁项集和支持度都放入了Map中,所以这样计算比較简单。
这里能够使用MapReduce的思路来实现。
1. 把文件A复制一份得到文件B;
对A的处理为直接输出频繁项集,输出的key为频繁项集,value是支持度和A的标签;对B的处理为输出全部的频繁项集中项大于1的频繁项集,其输出的key是频繁项集的前向(定义为频繁项集前面n-1个项)。value是频繁项集的后向(后向定义为频繁项集的最后一项)和支持度和标签。
分享,成长,快乐
转载请注明blog地址:http://blog.csdn.net/fansy1990
Fp关联规则算法计算置信度及MapReduce实现思路