首页 > 代码库 > 还是回文

还是回文

还是回文

时间限制:2000 ms  |  内存限制:65535 KB
难度:3
描述

判断回文串很简单,把字符串变成回文串也不难。现在我们增加点难度,给出一串字符(全部是小写字母),添加或删除一个字符,都会产生一定的花费。那么,将字符串变成回文串的最小花费是多少呢?

输入
多组数据
第一个有两个数n,m,分别表示字符的种数和字符串的长度
第二行给出一串字符,接下来n行,每行有一个字符(a~z)和两个整数,分别表示添加和删除这个字符的花费
所有数都不超过2000
输出
最小花费
样例输入
3 4
abcb
a 1000 1100
b 350 700
c 200 800
样例输出
900
思路:

dp[i][j]代表区间i到区间j成为回文串的最小代价,那么对于dp[i][j]有三种情况:

1、dp[i+1][j]表示区间i到区间j已经是回文串了的最小代价,那么对于s[i]这个字母,我们有两种操作,删除与添加,对应有两种代价,dp[i+1][j]+add[s[i]],dp[i+1][j]+del[s[i]],取这两种代价的最小值;

2、dp[i][j-1]表示区间i到区间j-1已经是回文串了的最小代价,那么对于s[j]这个字母,同样有两种操作,dp[i][j-1]+add[s[j]],dp[i][j-1]+del[s[j]],取最小值

3、若是s[i]==s[j],dp[i+1][j-1]表示区间i+1到区间j-1已经是回文串的最小代价,那么对于这种情况,我们考虑dp[i][j]与dp[i+1][j-1]的大小........

然后dp[i][j]取上面这些情况的最小值.........

还是回文