首页 > 代码库 > 楼梯问题:输出所有可能的走法

楼梯问题:输出所有可能的走法

楼梯有n阶台阶,上楼可以一步上1阶,也可以一步上2阶,编一程序列出每一种走法。 

     例:3阶台阶的走法是 
     { 
     { 1, 1, 1, }, 
     { 1, 2, }, 
     { 2, 1, }, 
      }

 

因为每一步只有两个选择1/2阶,那么根据题意可建立一棵二叉树,比如当n=3时:

          0        /         1      2     / \     /    1  2    1   /  1

这样(深搜+回溯)一棵树的所有到达叶子节点的路径就是上楼梯的所有方法了

(递归法)C++代码如下:

#include <iostream>
#include <list>

struct
Node{ int value = http://www.mamicode.com/0; Node *left = nullptr; Node *right = nullptr;};//@param n 总楼梯数//@param value 步长(1 || 2)//@param cur 当前已走过的总楼梯数void BuildTree(Node *root, int n, int value, int cur = 0){ root->value =http://www.mamicode.com/ value; cur += value; if (cur == n) return; if (cur + 1 <= n) { root->left = new Node; BuildTree(root->left, n, 1, cur); } if (cur + 2 <= n) { root->right = new Node; BuildTree(root->right, n, 2, cur); }}void PrintAll(Node *root, std::list<int> &vec, int cur = 0){ if (root == nullptr) return; cur += root->value; vec.push_back(root->value); if (root->left == nullptr && root->right == nullptr) { for (int i : vec) { if(i != 0) printf("%d ", i); } printf("\n"); } PrintAll(root->left, vec, cur); PrintAll(root->right, vec, cur); vec.pop_back();}void DeleteAll(Node *root){ if (root == nullptr) return; DeleteAll(root->left); DeleteAll(root->right); delete root;}void Compute(int n){ Node *root = new Node; std::list<int> st; BuildTree(root, n, 0); PrintAll(root, st); DeleteAll(root);}int main(){ std::cout << "n = 3 :" << std::endl; Compute(3); std::cout << std::endl; std::cout << "n = 4:" << std::endl; Compute(4);}

 

(递归法)lua 代码:

--@param n 总楼梯数--@param value 步长(1 || 2)--@param cur 当前已走过的总楼梯数function BuildTree(root, n, value, cur)    root.value = value    cur = cur + value    if cur == n then return end    if cur + 1 <= n then        root.left = { value = http://www.mamicode.com/0, left = nil, right = nil}        BuildTree(root.left, n, 1, cur)    end    if cur + 2 <= n then        root.right = { value = http://www.mamicode.com/0, left = nil, right = nil}        BuildTree(root.right, n, 2, cur)    endend

function PrintAllPath(root, stack, cur)    if root == nil then return end    cur = cur + root.value    table.insert(stack, root.value)    if root.left == nil and root.right == nil then        for key, value in pairs(stack) do            if value ~= 0 then                io.write(value,‘ ‘)            end        end        io.write(‘\n‘)    end    PrintAllPath(root.left, stack, cur)    PrintAllPath(root.right, stack, cur)    table.remove(stack)endfunction Compute(n)    stack = {}    root = { value = http://www.mamicode.com/0, left = nil, right = nil}    BuildTree(root, n, 0, 0)    --BuildTree(root, n)    PrintAllPath(root, stack, 0)endprint("n=3:")Compute(3)io.write(‘\n‘)print("n=4:")Compute(4)io.write(‘\n‘)print("n=5:")Compute(5)

 

 

迭代法(C++):

void BuildTree(Node *root, int n){    if (root == nullptr) return;    int cur(0);    std::stack<Node*> st;    std::map<Node*, int> stepMap;//记录当前已走过的楼梯数    Node *p = root;    st.push(p);    stepMap[p] = 0;    while (!st.empty())    {        p = st.top();        st.pop();        cur = stepMap[p];        if (cur + 2 <= n)        {            p->right = new Node;            p->right->value = http://www.mamicode.com/2;            if (cur + 2 < n)            {                st.push(p->right);                stepMap[p->right] = cur + 2;            }        }        if (cur + 1 <= n)        {            p->left = new Node;            p->left->value = http://www.mamicode.com/1;            if (cur + 1 < n)            {                st.push(p->left);                stepMap[p->left] = cur + 1;            }        }    }}

 

迭代法(Lua):

function BuildTree(root, n)    if root == nil then return end    cur = 0    stack = {}    stepMap = {}    p = root    table.insert(stack, p)    stepMap[p] = 0    while(#stack ~= 0) do        p = stack[1]        table.remove(stack, 1)        cur = stepMap[p]        if cur + 2 <= n then            p.right = {value = http://www.mamicode.com/2, left = nil, right = nil}            if cur + 2 < n then                table.insert(stack, p.right)                stepMap[p.right] = cur + 2            end        end        if cur + 1 <= n then            p.left = {value = http://www.mamicode.com/1, left = nil, right = nil}            if cur + 1 < n then                table.insert(stack, p.left)                stepMap[p.left] = cur + 1            end        end    endend