首页 > 代码库 > 【机器学习算法-python实现】K-means无监督学习实现分类
【机器学习算法-python实现】K-means无监督学习实现分类
1.背景
无监督学习的定义就不多说了,不懂得可以google。因为项目需要,需要进行无监督的分类学习。
K-means里面的K指的是将数据分成的份数,基本上用的就是算距离的方法。
大致的思路就是给定一个矩阵,假设K的值是2,也就是分成两个部分,那么我们首先确定两个质心。一开始是找矩阵每一列的最大值max,最小值min,算出range=max-min,然后设质心就是min+range*random。之后在逐渐递归跟进,其实要想明白还是要跟一遍代码,自己每一步都输出一下看看跟自己想象的是否一样。
(顺便吐槽一下,网上好多人在写文章的事后拿了书上的代码就粘贴上,也不管能不能用,博主改了一下午才改好。。。,各种bug)
2.代码
‘‘‘ @author: hakuri ‘‘‘ from numpy import * import matplotlib.pyplot as plt def loadDataSet(fileName): #general function to parse tab -delimited floats dataMat = [] #assume last column is target value fr = open(fileName) for line in fr.readlines(): curLine = line.strip().split(‘\t‘) fltLine = map(float,curLine) #map all elements to float() dataMat.append(fltLine) return dataMat def distEclud(vecA, vecB): return sqrt(sum(power(vecA - vecB, 2))) #la.norm(vecA-vecB) def randCent(dataSet, k): n = shape(dataSet)[1] centroids = mat(zeros((k,n)))#create centroid mat for j in range(n):#create random cluster centers, within bounds of each dimension minJ = min(array(dataSet)[:,j]) rangeJ = float(max(array(dataSet)[:,j]) - minJ) centroids[:,j] = mat(minJ + rangeJ * random.rand(k,1)) return centroids def kMeans(dataSet, k, distMeas=distEclud, createCent=randCent): m = shape(dataSet)[0] clusterAssment = mat(zeros((m,2)))#create mat to assign data points #to a centroid, also holds SE of each point centroids = createCent(dataSet, k) clusterChanged = True while clusterChanged: clusterChanged = False for i in range(m):#for each data point assign it to the closest centroid minDist = inf; minIndex = -1 for j in range(k): distJI = distMeas(array(centroids)[j,:],array(dataSet)[i,:]) if distJI < minDist: minDist = distJI; minIndex = j if clusterAssment[i,0] != minIndex: clusterChanged = True clusterAssment[i,:] = minIndex,minDist**2 print centroids # print nonzero(array(clusterAssment)[:,0] for cent in range(k):#recalculate centroids ptsInClust = dataSet[nonzero(array(clusterAssment)[:,0]==cent)[0][0]]#get all the point in this cluster centroids[cent,:] = mean(ptsInClust, axis=0) #assign centroid to mean id=nonzero(array(clusterAssment)[:,0]==cent)[0] return centroids, clusterAssment,id def plotBestFit(dataSet,id,centroids): dataArr = array(dataSet) cent=array(centroids) n = shape(dataArr)[0] n1=shape(cent)[0] xcord1 = []; ycord1 = [] xcord2 = []; ycord2 = [] xcord3=[];ycord3=[] j=0 for i in range(n): if j in id: xcord1.append(dataArr[i,0]); ycord1.append(dataArr[i,1]) else: xcord2.append(dataArr[i,0]); ycord2.append(dataArr[i,1]) j=j+1 for k in range(n1): xcord3.append(cent[k,0]);ycord3.append(cent[k,1]) fig = plt.figure() ax = fig.add_subplot(111) ax.scatter(xcord1, ycord1, s=30, c=‘red‘, marker=‘s‘) ax.scatter(xcord2, ycord2, s=30, c=‘green‘) ax.scatter(xcord3, ycord3, s=50, c=‘black‘) plt.xlabel(‘X1‘); plt.ylabel(‘X2‘); plt.show() if __name__==‘__main__‘: dataSet=loadDataSet(‘/Users/hakuri/Desktop/testSet.txt‘) # # print randCent(dataSet,2) # print dataSet # # print kMeans(dataSet,2) a=[] b=[] a, b,id=kMeans(dataSet,2) plotBestFit(dataSet,id,a)
用的时候直接看最后的main,dataSet是数据集输入,我会在下载地址提供给大家。
kmeans函数第一个参数是输入矩阵、第二个是K的值,也就是分几份。
plotBestFit是画图函数,需要加plot库,而且目前只支持二维且K=2的情况。
3.效果图
里面黑色的大点是两个质心,怎么样,效果还可以吧!测试的时候一定要多用一点数据才会明显。
4.下载地址
我的github地址https://github.com/jimenbian,喜欢就点个starO(∩_∩)O哈!
点我下载
/********************************
* 本文来自博客 “李博Garvin“
* 转载请标明出处:http://blog.csdn.net/buptgshengod
******************************************/
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。