首页 > 代码库 > Codeforces446C DZY Loves Fibonacci Numbers(线段树 or 分块?)

Codeforces446C DZY Loves Fibonacci Numbers(线段树 or 分块?)

第一次看到段更斐波那契数列的,整个人都不会好了。事后看了题解才明白了一些。

首先利用二次剩余的知识,以及一些数列递推式子有下面的

 

 

 

 

 

至于怎么解出x^2==5(mod 10^9+9),我就不知道了,但是要用的时候可以枚举一下,把这些参数求出来之后就题目就可以转化为维护等比数列。

由于前面的常数可以最后乘,所以就等于维护两个等比数列好了。

下面我们来看如何维护一个等比数列。假如我对区间[L,R]的加上1,2,4,8...2^n的话,那么我只需要加一个标记x表示这个区间被加了多少次这样的2^n.

举个例子  [1,8] 上加一个等比数列,我只需要x+=1,就可以了,当我的区间往下传的时候,[1,4]这个区间的x+=1,[5,8]这个区间x+=2^4*1

这个利用的就是公比相同的数列相加仍然是等比数列的性质。求和利用的则是 a1(q^n-1)/(q-1),所以只需要预处理出q-1的逆元还有q^n我们就可以根据区间信息很快的求出和了。

在本题中 q-1的逆=q,首项也是q,所以前n项和就是 qi^(n+2)-qi^2(i=1,2). 其实主要就是考虑怎么维护等比数列的问题。

 

然后我看到在别人的AC的方法里还有这么一种神方法,他预先设定了一个阈值K,当当前的更新操作数j<K的时候,它就用一个类似于树状数组段更的方法,用一个 d数组去存内容,譬如它要在区间 [3,6]上加一段fibonacci

原来:

id 0 1 2 3 4 5 6 7 8 9 10

d  0 0 0 0 0 0 0 0 0 0 0

更新:

id 0 1 2 3 4 5 6  7  8  9 10

d  0 0 0 1 0 0 0 -5  -3 0 0

我们可以发现,当利用 d[i]=d[i]+d[i-1]+d[i-2] i由小到大更新后就会得到

id 0 1 2 3 4 5 6  7  8  9 10

d  0 0 0 1 1 2 3  0  0  0  0

所以对于[L,R]上加一段操作,我们可以d[L]+=1; d[R+1]-=f[R-L+2],d[R+2]=f[R-L+1]; 

所以假如我更新了m次,我每次更新的复杂度是O(1),我把所有数求出来一次的复杂度是O(n)

然后他的算法是这样的,j<K的时候更新的时候按照上述方法更新,询问的话则是将询问区间和更新的区间求交,把交的和加上去。

当j==K的时候,利用d还原出新的a,把当前的区间清0.

不难发现,复杂度应该为O(mn/K+mK),当mn/K=mK的时候取最小值,所以复杂度是O(mn^(1/2)).

然后由于CF可以承受10 ^8的运算,所以打个擦边球AC了。下面贴两份代码:

#pragma warning(disable:4996)#include <iostream>#include <cstdio>#include <cstring>#include <string>#include <vector>#include <cmath>#include <algorithm>using namespace std;#define ll long long#define mod 1000000009#define maxn 300500ll bas = 276601605;ll q1 = 691504013;ll q2 = 308495997;ll xx5 = 383008016;ll inv5 = 200000002;ll inv2 = 500000005;ll invq1;ll invq2;ll pow_mod(ll a, ll n){	ll ret = 1;	while (n){		if (n & 1) ret = ret*a%mod;		n >>= 1;		a = a*a%mod;	}	return ret;}ll a[maxn], b[maxn];int n, m;ll val[maxn];ll sum[maxn];struct Node{	int l, r;	ll ax, bx;	ll sum;}N[maxn << 2];void build(int i, int L, int R){	N[i].l = L; N[i].r = R;	N[i].ax = N[i].bx = N[i].sum = 0;	if (L == R){		return;	}	int M = (L + R) >> 1;	build(i << 1, L, M);	build(i << 1 | 1, M + 1, R);}void pushDown(int i){	ll av = N[i].ax, bv = N[i].bx;	if (N[i].ax != 0 || N[i].bx != 0){		N[i << 1].ax = (N[i << 1].ax + av) % mod;		N[i << 1].bx = (N[i << 1].bx + bv) % mod;		int len = N[i << 1].r - N[i << 1].l + 1;		N[i << 1 | 1].ax = (N[i << 1 | 1].ax + av*a[len] % mod) % mod;		N[i << 1 | 1].bx = (N[i << 1 | 1].bx + bv*b[len] % mod) % mod;		int len2 = N[i << 1 | 1].r - N[i << 1 | 1].l + 1;		N[i << 1].sum = (N[i << 1].sum + av*(((a[len + 2] - a[2]) % mod + mod) % mod) % mod) % mod;		N[i << 1].sum = (N[i << 1].sum - bv*(((b[len + 2] - b[2]) % mod + mod) % mod) % mod) % mod;		N[i << 1 | 1].sum = (N[i << 1 | 1].sum + av*a[len] % mod*(a[len2 + 2] - a[2] + mod) % mod) % mod;		N[i << 1 | 1].sum = ((N[i << 1 | 1].sum - bv*b[len] % mod*(b[len2 + 2] - b[2] + mod) % mod) % mod + mod) % mod;		N[i].ax = N[i].bx = 0;	}}void pushUp(int i){	N[i].sum = (N[i << 1].sum + N[i << 1 | 1].sum) % mod;}void update(int i, int L, int R, ll x, ll y){	if (N[i].l == L&&N[i].r == R){		N[i].ax = (N[i].ax + x) % mod;		N[i].bx = (N[i].bx + y) % mod;		int len = R - L + 1;		N[i].sum = (N[i].sum + x*(a[len + 2] - a[2] + mod) % mod + mod) % mod;		N[i].sum = (N[i].sum - y*(b[len + 2] - b[2] + mod) % mod + mod) % mod;		return;	}	pushDown(i);	int M = (N[i].l + N[i].r) >> 1;	if (R <= M){		update(i << 1, L, R, x, y);	}	else if (L > M){		update(i << 1 | 1, L, R, x, y);	}	else{		int len = (M - L + 1);		update(i << 1, L, M, x, y);		update(i << 1 | 1, M + 1, R, a[len] * x%mod, b[len] * y%mod);	}	pushUp(i);}ll query(int i, int L, int R){	if (N[i].l == L&&N[i].r == R){		return N[i].sum;	}	pushDown(i);	int M = (N[i].l + N[i].r) >> 1;	if (R <= M){		return query(i << 1, L, R);	}	else if (L > M){		return query(i << 1 | 1, L, R);	}	else{		return (query(i << 1, L, M) + query(i << 1 | 1, M + 1, R)) % mod;	}	pushUp(i);}int main(){	scanf("%d%d", &n, &m);	a[0] = b[0] = 1;	for (int i = 1; i <= n + 5; i++){		a[i] = a[i - 1] * q1%mod;		b[i] = b[i - 1] * q2%mod;	}	val[0] = 0; sum[0] = 0;	for (int i = 1; i <= n; i++){		scanf("%I64d", val + i);		sum[i] = (sum[i - 1] + val[i]) % mod;	}	build(1, 1, n);	int oper, l, r;	for (int i = 0; i < m; i++){		scanf("%d%d%d", &oper, &l, &r);		if (oper == 1) update(1, l, r, 1, 1);		else {			ll res = query(1, l, r);			res = (res + mod) % mod;			res = res*bas%mod;			res = (res + ((sum[r] - sum[l - 1]) % mod+mod)%mod) % mod;			printf("%I64d\n", res);		}	}	return 0;}

 

#pragma warning(disable:4996)#include <iostream>#include <cstdio>#include <cstring>#include <string>#include <vector>#include <cmath>#include <map>#include <algorithm>#include <queue>using namespace std;#define ll long long#define maxn 310000#define K 800#define mod 1000000009ll a[maxn];ll s[maxn];ll f[maxn], g[maxn];int n, m;int kk;ll d[maxn];int l[K + 50], r[K + 50];int main(){    while (cin >> n >> m)    {        f[0] = 0; f[1] = 1; g[0] = 0; g[1] = 1;        for (int i = 2; i <= n+10; i++){            f[i] = (f[i - 1] + f[i - 2]) % mod;            g[i] = (g[i - 1] + f[i]) % mod;        }        s[0] = 0;        for (int i = 1; i <= n; i++){            scanf("%I64d", &a[i]);            s[i] = (s[i - 1] + a[i]) % mod;        }        memset(d, 0, sizeof(d));        int oper, li, ri;        kk = 0;        for (int i = 0; i < m; i++){            scanf("%d%d%d", &oper,&li,&ri);            if (oper == 1){                l[kk] = li, r[kk] = ri;                d[li] = (d[li] + 1) % mod;                d[ri + 1] = ((d[ri + 1] - f[ri - li + 2]) % mod + mod) % mod;                d[ri + 2] = ((d[ri + 2] - f[ri - li + 1]) % mod + mod) % mod;                kk++;                if (kk == K){                    for (int i = 1; i <= n; i++){                        if (i == 1) a[i] = (a[i] + d[i]) % mod;                        else {                            d[i] = (d[i] + d[i - 1] + d[i - 2]) % mod;                            a[i] = (a[i] + d[i]) % mod;                        }                        s[i] = (s[i - 1] + a[i]) % mod;                    }                    memset(d, 0, sizeof(d));                    kk = 0;                }            }            else{                ll res = ((s[ri] - s[li - 1]) % mod + mod) % mod;                for (int j = 0; j < kk; j++){                    int lb = max(l[j], li);                    int rb = min(r[j], ri);                    if (lb <= rb){                        res = (res + (g[rb - l[j] + 1] - g[lb - l[j]]) % mod + mod) % mod;                    }                }                printf("%I64d\n", res);            }        }    }    return 0;}