首页 > 代码库 > 【组队赛三】-D 优先队列 cf446B
【组队赛三】-D 优先队列 cf446B
DZY Loves Modification
Time Limit:2000MS Memory Limit:262144KB 64bit IO Format:%I64d & %I64u
Submit
Status
Practice
CodeForces 446B
Description
As we know, DZY loves playing games. One day DZY decided to play with a n?×?m matrix. To be more precise, he decided to modify the matrix with exactly k operations.
Each modification is one of the following:
Pick some row of the matrix and decrease each element of the row by p. This operation brings to DZY the value of pleasure equal to the sum of elements of the row before the decreasing.
Pick some column of the matrix and decrease each element of the column by p. This operation brings to DZY the value of pleasure equal to the sum of elements of the column before the decreasing.
DZY wants to know: what is the largest total value of pleasure he could get after performing exactly k modifications? Please, help him to calculate this value.
Input
The first line contains four space-separated integers n,?m,?k and p(1?≤?n,?m?≤?103; 1?≤?k?≤?106; 1?≤?p?≤?100).
Then n lines follow. Each of them contains m integers representing aij (1?≤?aij?≤?103) — the elements of the current row of the matrix.
Output
Output a single integer — the maximum possible total pleasure value DZY could get.
Sample Input
Input
2 2 2 2
1 3
2 4
Output
11
Input
2 2 5 2
1 3
2 4
Output
11
Hint
For the first sample test, we can modify: column 2, row 2. After that the matrix becomes:
1 1
0 0
For the second sample test, we can modify: column 2, row 2, row 1, column 1, column 2. After that the matrix becomes:
-3 -3
-2 -2
Time Limit:2000MS Memory Limit:262144KB 64bit IO Format:%I64d & %I64u
Submit
Status
Practice
CodeForces 446B
Description
As we know, DZY loves playing games. One day DZY decided to play with a n?×?m matrix. To be more precise, he decided to modify the matrix with exactly k operations.
Each modification is one of the following:
Pick some row of the matrix and decrease each element of the row by p. This operation brings to DZY the value of pleasure equal to the sum of elements of the row before the decreasing.
Pick some column of the matrix and decrease each element of the column by p. This operation brings to DZY the value of pleasure equal to the sum of elements of the column before the decreasing.
DZY wants to know: what is the largest total value of pleasure he could get after performing exactly k modifications? Please, help him to calculate this value.
Input
The first line contains four space-separated integers n,?m,?k and p(1?≤?n,?m?≤?103; 1?≤?k?≤?106; 1?≤?p?≤?100).
Then n lines follow. Each of them contains m integers representing aij (1?≤?aij?≤?103) — the elements of the current row of the matrix.
Output
Output a single integer — the maximum possible total pleasure value DZY could get.
Sample Input
Input
2 2 2 2
1 3
2 4
Output
11
Input
2 2 5 2
1 3
2 4
Output
11
Hint
For the first sample test, we can modify: column 2, row 2. After that the matrix becomes:
1 1
0 0
For the second sample test, we can modify: column 2, row 2, row 1, column 1, column 2. After that the matrix becomes:
-3 -3
-2 -2
<span style="color:#3333ff;">/* _______________________________________________________________________________________ author : Grant yuan time : 2014.7.21 algorithm : priority_queue explain : 首先对行和列在1到k的范围内分别求解,然后求出一个满足i和k-i的最大值, 注意最终的结果中减去重复计算的,还有会测试大于int类型的数据。 ————————————————————————————————————————————————————————————————————————————————————————— */ #include<iostream> #include<cstdio> #include<cstring> #include<cstdlib> #include<algorithm> #include<queue> #include<functional> using namespace std; #define INF 999999999; priority_queue<__int64>q1; priority_queue<__int64>q2; __int64 m,n,k,p,h; __int64 a[1003][1003]; __int64 s1[1003],s2[1003]; __int64 sum1[1000003],sum2[1000003]; __int64 res,ans,hh; int main() { cin>>n>>m>>k>>p; ans=INF; ans=-ans*ans; memset(s1,0,sizeof(s1)); memset(s2,0,sizeof(s2)); memset(sum1,0,sizeof(sum1)); memset(sum2,0,sizeof(sum2)); while(!q1.empty()) q1.pop(); while(!q2.empty()) q2.pop(); for(int i=0;i<n;i++) for(int j=0;j<m;j++){ scanf("%I64d",&a[i][j]); s1[i]+=a[i][j]; s2[j]+=a[i][j];} for(int i=0;i<n;i++) q1.push(s1[i]); for(int i=0;i<m;i++) q2.push(s2[i]); for(int i=1;i<=k;i++) { h=q1.top();q1.pop(); if(i==1)sum1[i]=h; else sum1[i]=sum1[i-1]+h; h-=m*p; q1.push(h); } for(int i=1;i<=k;i++) { h=q2.top();q2.pop(); if(i==1)sum2[i]=h; else sum2[i]=sum2[i-1]+h; h-=n*p; q2.push(h); } for(int i=0;i<=k;i++) { res=sum1[i]+sum2[k-i]; ans=max(ans,res-i*p*(k-i)); } cout<<ans<<endl; return 0; } </span>
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。