首页 > 代码库 > Balanced Lineup
Balanced Lineup
Time Limit: 5000MS | Memory Limit: 65536K | |
Total Submissions: 49061 | Accepted: 22975 | |
Case Time Limit: 2000MS |
Description
For the daily milking, Farmer John‘s N cows (1 ≤ N ≤ 50,000) always line up in the same order. One day Farmer John decides to organize a game of Ultimate Frisbee with some of the cows. To keep things simple, he will take a contiguous range of cows from the milking lineup to play the game. However, for all the cows to have fun they should not differ too much in height.
Farmer John has made a list of Q (1 ≤ Q ≤ 200,000) potential groups of cows and their heights (1 ≤ height ≤ 1,000,000). For each group, he wants your help to determine the difference in height between the shortest and the tallest cow in the group.
Input
Line 1: Two space-separated integers, N and Q.
Lines 2..N+1: Line i+1 contains a single integer that is the height of cow i
Lines N+2..N+Q+1: Two integers A and B (1 ≤ A ≤ B ≤ N), representing the range of cows from A to B inclusive.
Lines 2..N+1: Line i+1 contains a single integer that is the height of cow i
Lines N+2..N+Q+1: Two integers A and B (1 ≤ A ≤ B ≤ N), representing the range of cows from A to B inclusive.
Output
Lines 1..Q: Each line contains a single integer that is a response to a reply and indicates the difference in height between the tallest and shortest cow in the range.
Sample Input
6 31734251 54 62 2
Sample Output
630
题目大意:给出一个数字序列,对于每次提问,输出区间(i,j)内的最大值数与最小值数的差。RMQ模板题。
#include<cstdio>#include<iostream>#include<cstring>#include<algorithm>#include<cmath>#define N 50010#define ll long longusing namespace std;int f[N][20],fi[N][20],a[N];int n,m;void RMQ(){ for (int i=1;i<=n;i++) f[i][0]=a[i],fi[i][0]=a[i]; for (int i=1;i<=floor(log(n)/log(2));i++) for (int j=1;j<=n+1-(1<<i);j++) { f[j][i]=max(f[j][i-1],f[j+(1<<i-1)][i-1]);//区间最大值 fi[j][i]=min(fi[j][i-1],fi[j+(1<<i-1)][i-1]);//区间最小值 } }int main(){ while (scanf("%d%d",&n,&m)!=EOF) { for (int i=1;i<=n;i++) scanf("%d",&a[i]); RMQ(); for (int i=1,x,y;i<=m;i++) { scanf("%d%d",&x,&y); int k; k=(int) (log(y-x+1.0)/log(2.0)); //如果k=(log(y-x+1)/log(2)),那么当log(8)/log(2)时,k=2 int ans1=max(f[x][k],f[y-(1<<k)+1][k]),ans2=min(fi[x][k],fi[y-(1<<k)+1][k]); printf("%d\n",ans1-ans2); } } return 0;}
Balanced Lineup
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。