首页 > 代码库 > POJ 2387 Til the Cows Come Home(最短路 Dijkstra/spfa)
POJ 2387 Til the Cows Come Home(最短路 Dijkstra/spfa)
传送门
Til the Cows Come Home
Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 46727 | Accepted: 15899 |
Description
Bessie is out in the field and wants to get back to the barn to get as much sleep as possible before Farmer John wakes her for the morning milking. Bessie needs her beauty sleep, so she wants to get back as quickly as possible.
Farmer John‘s field has N (2 <= N <= 1000) landmarks in it, uniquely numbered 1..N. Landmark 1 is the barn; the apple tree grove in which Bessie stands all day is landmark N. Cows travel in the field using T (1 <= T <= 2000) bidirectional cow-trails of various lengths between the landmarks. Bessie is not confident of her navigation ability, so she always stays on a trail from its start to its end once she starts it.
Given the trails between the landmarks, determine the minimum distance Bessie must walk to get back to the barn. It is guaranteed that some such route exists.
Farmer John‘s field has N (2 <= N <= 1000) landmarks in it, uniquely numbered 1..N. Landmark 1 is the barn; the apple tree grove in which Bessie stands all day is landmark N. Cows travel in the field using T (1 <= T <= 2000) bidirectional cow-trails of various lengths between the landmarks. Bessie is not confident of her navigation ability, so she always stays on a trail from its start to its end once she starts it.
Given the trails between the landmarks, determine the minimum distance Bessie must walk to get back to the barn. It is guaranteed that some such route exists.
Input
* Line 1: Two integers: T and N
* Lines 2..T+1: Each line describes a trail as three space-separated integers. The first two integers are the landmarks between which the trail travels. The third integer is the length of the trail, range 1..100.
* Lines 2..T+1: Each line describes a trail as three space-separated integers. The first two integers are the landmarks between which the trail travels. The third integer is the length of the trail, range 1..100.
Output
* Line 1: A single integer, the minimum distance that Bessie must travel to get from landmark N to landmark 1.
Sample Input
5 51 2 202 3 303 4 204 5 201 5 100
Sample Output
90
Hint
INPUT DETAILS:
There are five landmarks.
OUTPUT DETAILS:
Bessie can get home by following trails 4, 3, 2, and 1.
There are five landmarks.
OUTPUT DETAILS:
Bessie can get home by following trails 4, 3, 2, and 1.
Dijkstra()
#include<iostream>#include<cstdio>#include<cstring>#include<queue>#include<algorithm>using namespace std;typedef __int64 LL;const int maxn = 2005;const int INF = 0x3f3f3f3f;struct Edge{ int u,v,next; LL w; bool operator < (const Edge & a)const { return w > a.w; }}edge[maxn<<1] ;int tot = 0,head[maxn];bool vis[maxn];LL dis[maxn];void addedge(int u,int v,LL w){ edge[tot] = (Edge){u,v,head[u],w }; head[u] = tot++;}void Dijkstra(){ priority_queue<Edge>que; Edge p; memset(dis,INF,sizeof(dis)); memset(vis,false,sizeof(vis)); p.v = 1; que.push(p); dis[1] = 0; while (!que.empty()) { p = que.top(); que.pop(); int u = p.v; if (vis[u]) continue; vis[u] = true; for (int i = head[u];i != -1;i = edge[i].next) { int v = edge[i].v; if (dis[u] + edge[i].w < dis[v]) { dis[v] = dis[u] + edge[i].w; p.u = u,p.v = v,p.w = dis[v]; que.push(p); } } }}int main(){ //freopen("input.txt","r",stdin); int T,N,u,v; LL w; memset(head,-1,sizeof(head)); scanf("%d%d",&T,&N); for (int i = 0;i < T;i++) { scanf("%d%d%I64d",&u,&v,&w); addedge(u,v,w); addedge(v,u,w); } Dijkstra(); printf("%I64d\n",dis[N]); return 0;}
spfa()
#include<cstdio>#include<cstring>#include<iostream>#include<queue>#include<algorithm>using namespace std;const int INF = 0x3f3f3f3f;const int MAX_N = 1005;bool flag[MAX_N];int edge[MAX_N][MAX_N];void spfa(int n){ int dis[MAX_N]; queue<int>que; memset(flag,false,sizeof(flag)); memset(dis,0x3f3f3f3f,sizeof(dis)); dis[1] = 0; que.push(1); flag[1] = true; while (!que.empty()) { int curval = que.front(); que.pop(); flag[curval] = false; for (int i = 1;i <= n;i++) { if (dis[curval] < dis[i] - edge[curval][i]) { dis[i] = dis[curval] + edge[curval][i]; if (!flag[i]) { que.push(i); flag[i] = true; } } } } printf("%d\n",dis[n]);}int main(){ int N,T; while (~scanf("%d%d",&T,&N)) { int u,v,w; for (int i = 1;i <= N;i++) { for (int j = 1;j <= i;j++) { if (i == j) edge[i][j] = 0; else edge [i][j] = edge[j][i] = INF; } } for (int i = 0;i < T;i++) { scanf("%d%d%d",&u,&v,&w); /*if (w < edge[u][v]) { edge[u][v] = edge[v][u] = w; }*/ edge[u][v] = edge[v][u] = min(w,edge[u][v]); } spfa(N); } return 0;}
POJ 2387 Til the Cows Come Home(最短路 Dijkstra/spfa)
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。