首页 > 代码库 > leetcode-Palindrome Partitioning II
leetcode-Palindrome Partitioning II
Palindrome Partitioning II
Total Accepted: 11791 Total Submissions: 66110Given a string s, partition s such that every substring of the partition is a palindrome.
Return the minimum cuts needed for a palindrome partitioning of s.
For example, given s = "aab"
,
Return 1
since the palindrome partitioning ["aa","b"]
could be produced using 1 cut.
这道题是Palindrome Partitioning的变形,要求求出最小的切割使得所有切割后的子串都是回文串。
可以在Palindrome Partitioning的基础上修改,在找到可行解时,更新最优解。
class Solution { public: int minCut(string s) { ans = INT_MAX; findMinCut(s, 0, 0); return ans; } private: int ans; void findMinCut(const string &s, int k, int currCut) { string substr; for (int i=k; i<s.size(); ++i) { if (isPalindrome(s, k, i)) { if (i+1 == s.size()) { if (currCut+1 < ans) { ans = currCut+1; } } else { findMinCut(s, i+1, currCut+1); } } } } bool isPalindrome(const string &s, int b, int e) { int i=b, j=e; while (i<j) { if (s[i] != s[j]) return false; ++i; --j; } return true; } };
如果增加记忆化搜索+剪枝,还是会TLE。超时的case是一大串"aaaa...aa"的情况。
class Solution { public: int minCut(string s) { minCutNum = INT_MAX; vector<string> paths; find(s, 0, paths); return minCutNum; } private: int minCutNum; map<int, int> minCutsMap; void find(const string& s, int ind, vector<string>& paths) { for (int i = ind; i < s.size(); ++i) { if (isPalindrome(s, ind, i)) { if (paths.size() > minCutNum) continue; if (minCutsMap.find(i+1) != minCutsMap.end()) { if (paths.size() + minCutsMap.size() - 1 < minCutNum) { minCutNum = paths.size() + minCutsMap.size() - 1; } continue; } paths.push_back(s.substr(ind, i - ind + 1)); if (i + 1 == s.size()) { if (minCutNum > paths.size() - 1) { minCutNum = paths.size() - 1; } paths.pop_back(); continue; } int num = paths.size(); minCutsMap[i + 1] = INT_MAX; find(s, i + 1, paths); if (minCutsMap[i + 1] > paths.size() - num) { minCutsMap[i + 1] = paths.size() - num; } if (minCutNum == 0) return; paths.pop_back(); } } } bool isPalindrome(const string& str, int begin, int end) { while (begin < end) { if (str[begin] != str[end]) return false; ++begin; --end; } return true; } };
最后网上参考了别人的DP,自己写了下,终于看到Accepted。初始化isPalindrome的方法也是用了DP的方法,跟计算矩阵连乘最小操作数类似。假设字符串为str,长度为n,计算最小切割数的状态转移方程为:dp[i] = min{dp[j]+1,dp[i]}(j=i+1...n-1), 其中dp[i]为str[i]...str[n-1]的最小切割数。在做DP题时,要考虑清楚怎么存状态,以及状态是如何转移的。DP的优点就是能够根据以前的选择来做出当下最优的选择,像贪心算法就不能,只有以前局部最优的状态。
class Solution { public: int minCut(string s) { int len = s.size(); bool **isPalindrome = new bool*[len]; for (int i = 0; i < len; ++i) { isPalindrome[i] = new bool[len]; } initIsPalindrome(isPalindrome, s); int *dp = new int[len]; // dp[i] stores minimum cuts for s[i]...s[len-1] for (int i = len - 1; i >= 0; --i) { if (isPalindrome[i][len - 1]) { dp[i] = 0; continue; } dp[i] = INT_MAX; for (int j = i + 1; j < len; ++j) { if (isPalindrome[i][j - 1]) { if (dp[j] + 1 < dp[i]) { dp[i] = dp[j] + 1; } } } } int ret = dp[0]; for (int i = 0; i < len; ++i) delete []isPalindrome[i]; delete []isPalindrome; delete dp; return ret; } private: void initIsPalindrome(bool ** isPalindrome, const string& s) { int len = s.length(); for (int L = 1; L <= len; ++L) { // L is the length of substring, from 1 to len for (int i = 0; i < len - L + 1; ++i) { // i is the starting index int j = i + L - 1; // j is the ending index if (L == 1) { isPalindrome[i][j] = true; } else if (L == 2) { isPalindrome[i][j] = s[i] == s[j]; } else { isPalindrome[i][j] = (s[i] == s[j]) && isPalindrome[i + 1][j - 1]; } } } } };
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。