首页 > 代码库 > LeetCode118 Pascal's Triangle

LeetCode118 Pascal's Triangle

Given numRows, generate the first numRows of Pascal‘s triangle.

For example, given numRows = 5, (Easy)
Return

[
     [1],
    [1,1],
   [1,2,1],
  [1,3,3,1],
 [1,4,6,4,1]
]

 

分析:

求解杨辉三角形,按照其定义以此求解即可,注意优化写法使其能够更简洁(比如对于二维数组每一行的个数其实是已知的,所以可以先push_back一个长度的数组,后面直接用下标访问),即第二种写法的代码。

代码:

 1 class Solution {
 2 public:
 3     vector<vector<int>> generate(int numRows) {
 4         vector<vector<int>> result;
 5         if (numRows == 0) {
 6             return result;
 7         }
 8         vector<int> oldVec{1};
 9         result.push_back(oldVec);
10         for (int i = 2; i <= numRows; ++i) {
11             vector<int> newVec;
12             for (int j = 0; j < i; ++j) {
13                 int temp;
14                 if (j > 0 && j < oldVec.size()) {
15                     temp = oldVec[j] + oldVec[j - 1];
16                 }
17                 else if (j > 0){
18                     temp = oldVec[j - 1];
19                 }
20                 else {
21                     temp = oldVec[0];
22                 }
23                 newVec.push_back(temp);
24             }
25             result.push_back(newVec);
26             oldVec = newVec;
27         }
28         return result;
29     }
30 };
 1 class Solution {
 2 public:
 3     vector<vector<int>> generate(int numRows) {
 4         vector<vector<int>> result;
 5         if (numRows == 0) {
 6             return result;
 7         }
 8         vector<int> init{1};
 9         result.push_back(init);
10         for (int i = 2; i <= numRows; ++i) {
11             result.push_back(vector<int>(i,1));
12             for (int j = 1; j < i - 1; ++j) {
13                 result[i - 1][j] = result[i - 2][j] + result[i - 2][j - 1];
14             }
15         }
16         return result;
17     }
18 };

 

LeetCode118 Pascal's Triangle