首页 > 代码库 > [ACM] POJ 1286 Necklace of Beads (Polya计数,直接套公式)
[ACM] POJ 1286 Necklace of Beads (Polya计数,直接套公式)
Necklace of Beads
Time Limit: 1000MS | Memory Limit: 10000K | |
Total Submissions: 6547 | Accepted: 2734 |
Description
Beads of red, blue or green colors are connected together into a circular necklace of n beads ( n < 24 ). If the repetitions that are produced by rotation around the center of the circular necklace or reflection to the axis of symmetry are all neglected, how many different forms of the necklace are there?
Input
The input has several lines, and each line contains the input data n.
-1 denotes the end of the input file.
-1 denotes the end of the input file.
Output
The output should contain the output data: Number of different forms, in each line correspondent to the input data.
Sample Input
4 5 -1
Sample Output
21 39
Source
Xi‘an 2002
和http://blog.csdn.net/sr_19930829/article/details/38108871几乎是一模一样的。考虑n=0的情况,要不然runtime error- - !
代码:
#include <iostream> #define LL long long using namespace std; int gcd(int a,int b) { return b==0?a:gcd(b,a%b); } LL power(LL p,LL n) { LL sum=1; while(n) { if(n&1) sum*=p; p*=p; n/=2; } return sum; } int main() { int n; while(cin>>n&&n!=-1) { if(n==0)//考虑n等于0的情况。。 { cout<<0<<endl; continue; } LL ans=0; for(int i=1;i<=n;i++) ans+=power(3,gcd(i,n)); if(n&1) ans+=n*power(3,n/2+1); else ans+=(power(3,n/2+1)+power(3,n/2))*(n/2); ans/=n*2; cout<<ans<<endl; } return 0; }
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。