首页 > 代码库 > Ural1109_Conference(二分图最大匹配/匈牙利算法/网络最大流)
Ural1109_Conference(二分图最大匹配/匈牙利算法/网络最大流)
解题报告
二分图第一题。
题目描述:
为了参加即将召开的会议,A国派出M位代表,B国派出N位代表,(N,M<=1000)
会议召开前,选出K队代表,每对代表必须一个是A国的,一个是B国的;
要求每一个代表要与另一方的一个代表联系,除了可以直接联系,也可以电话联系,求电话联系最少
思路:
电话联系最少就要使直接联系最大,又是一一匹配关系,就是二分图的最大匹配。
下面是匈牙利算法。
#include <cstdio> #include <cstring> #include <iostream> #include <algorithm> #define N 1050 #define M 1050 using namespace std; int mmap[M][N],vis[N],pre[N],n,m,k; int dfs(int x) { for(int i=1;i<=n;i++) { if(!vis[i]&&mmap[x][i]) { vis[i]=1; if(pre[i]==-1||dfs(pre[i])) { pre[i]=x; return 1; } } } return 0; } int main() { int i,j,u,v; memset(pre,-1,sizeof(pre)); memset(vis,0,sizeof(vis)); scanf("%d%d%d",&m,&n,&k); for(i=0;i<k;i++) { scanf("%d%d",&u,&v); mmap[u][v]=1; } int ans=0; for(i=1;i<=m;i++) { memset(vis,0,sizeof(vis)); ans+=dfs(i); } printf("%d\n",n+m-ans); }
二分最大匹配也可以用最大流做,当试试模板
#include <queue> #include <cstdio> #include <cstring> #include <iostream> #include <algorithm> #define inf 99999999 #define N 1050 #define M 1050 using namespace std; int mmap[M+N][N+M],vis[N],l[N+M],n,m,k; int bfs() { queue<int>Q; Q.push(0); memset(l,-1,sizeof(l)); l[0]=0; while(!Q.empty()) { int u=Q.front(); Q.pop(); for(int i=0;i<=n+m+1;i++) { if(l[i]==-1&&mmap[u][i]) { l[i]=l[u]+1; Q.push(i); } } } if(l[n+m+1]>0) return 1; return 0; } int dfs(int x,int f) { int a,i; if(x==n+m+1) return f; for(i=0;i<=n+m+1;i++) { if(mmap[x][i]&&l[i]==l[x]+1&&(a=dfs(i,min(f,mmap[x][i])))) { mmap[x][i]-=a; mmap[i][x]+=a; return a; } } return 0; } int main() { int i,j,u,v; memset(vis,0,sizeof(vis)); scanf("%d%d%d",&m,&n,&k); for(i=1;i<=m;i++) mmap[0][i]=1; for(i=m+1;i<=m+n;i++) mmap[i][m+n+1]=1; for(i=0;i<k;i++) { scanf("%d%d",&u,&v); mmap[u][v+m]=1; } int ans=0,a; while(bfs()) while(a=dfs(0,inf)) ans+=a; printf("%d\n",n+m-ans); }
Conference
Time limit: 0.5 second
Memory limit: 64 MB
Memory limit: 64 MB
On the upcoming conference were sent M representatives of country A and N representatives of country B (M and N ≤ 1000). The representatives were identified with 1, 2, …, M for country A and 1, 2, …, N for country B. Before the conference K pairs of representatives were chosen. Every such pair consists of one member of delegation A and one of delegation B. If there exists a pair in which both member #i of A and member #j of B are included then #i and #j can negotiate. Everyone attending the conference was included in at least one pair. The CEO of the congress center wants to build direct telephone connections between the rooms of the delegates, so that everyone is connected with at least one representative of the other side, and every connection is made between people that can negotiate. The CEO also wants to minimize the amount of telephone connections. Write a program which given M, N, K and K pairs of representatives, finds the minimum number of needed connections.
Input
The first line of the input contains M, N and K. The following K lines contain the choosen pairs in the form of two integers p1and p2, p1 is member of A and p2 is member of B.
Output
The output should contain the minimum number of needed telephone connections.
Sample
input | output |
---|---|
3 2 4 1 1 2 1 3 1 3 2 | 3 |
Problem Source: Bulgarian National Olympiad Day #1
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。