首页 > 代码库 > 图的邻接表的类实现
图的邻接表的类实现
const int DefaultVertices = 30; template<class T,class E> struct Edge{ int dest; //边结点定义 Edge<T,E> *link; //下一条边链指针 Edge(){} Edge(int num,E weight):dest(num),link(NULL) {} bool operator!=(Edge<T,E>& R)const{ return (dest!= R.deat)? true :false; } }; template<class T,class E> struct Vertex{ T data; //顶点名字 Edge<T,E> *adj; //边链表的头指针 }; template <class T,class E> class Graphlnk //注意这里没用继承 { public: Graphlnk(int sz=DefaultVertices); ~Graphlnk(); T getValue(int i) { return (i>=0 &&i<numVertices)?NodeTable[i].data : 0; } int getVnum() { return numVertices; } int getEnum() { return numEdges; } bool insertVertex (const T& vertex); bool insertEdge (int v1, int v2); int getFirstNeighbor (int v); int getNextNeighbor (int v, int w); void input(); void output(); int getVertexPos (T& vertex) //给出顶点vertex在图中的位置 { for (int i=0; i <numVertices; i++) if (NodeTable[i].data =http://www.mamicode.com/= vertex) return i; return -1; } private: int maxVertices,numVertices,numEdges; //必须加上这3个数据成员,分别为当前最大顶点数,当前顶点数,当前边数 Vertex<T, E> *NodeTable; //顶点表 (各边链表的头结点) }; template <class T, class E> void Graphlnk<T, E>::input() { int i,j,k,vn,en; //vn表示顶点数,en表示边数 T v1,v2; cout<<"输入顶点数和边数:\n"; cin>>vn>>en; for(i=0;i<vn;i++) { cin>>v1; insertVertex(v1); } i=0; while(i<en) { cout<<"输入边的两个顶点:"; cin>>v1>>v2; j=getVertexPos(v1); k=getVertexPos(v2); if(j==-1 || k==-1) cout<<"重新输入边的两个顶点信息!"<<endl; else { insertEdge(j,k); i++; } } } template <class T, class E> void Graphlnk<T, E>::output() { int i,vn,en; Edge<T,E> *p; vn=numVertices; en=numEdges; cout<<endl<<"图的顶点数="<<vn<<"边数="<<en<<endl<<endl; for(i=0;i<vn;i++) { cout<<i<<": "<<NodeTable[i].data; p=NodeTable[i].adj; while(p!=NULL) { cout<<"-->"<<p->dest; p=p->link; } cout<<endl; } } template<class T,class E> Graphlnk<T,E>::Graphlnk(int sz){ maxVertices = sz; numVertices = 0; numEdges = 0; NodeTable = new Vertex<T,E>[maxVertices]; //创建顶点表数组 if(NodeTable == NULL){ cout << "存储分配错误!" << endl;exit(1); } for(int i = 0;i < maxVertices;i++)NodeTable[i].adj = NULL; } template<class T,class E> Graphlnk<T,E>::~Graphlnk(){ for(int i =0;i<numVertices;i++){ Edge<T,E> *p = NodeTable[i].adj; while(p != NULL){ NodeTable[i].adj = p->link; delete p ; p = NodeTable[i].adj; } } delete[] NodeTable; // 删除顶点表数组 } template<class T,class E> int Graphlnk<T,E>::getFirstNeighbor(int v){ if(v != -1){ Edge<T,E> *p = NodeTable[v].adj; if(p!=NULL)return p->dest; } return -1; } template<class T,class E> int Graphlnk<T,E>::getNextNeighbor(int v,int w){ if(v!=-1){ Edge<T,E> *p=NodeTable[v].adj; while(p!=NULL&&p->dest!=w) p = p->link; if(p!=NULL&&p->link!=NULL) return p->link->dest; } return -1; } template<class T,class E> bool Graphlnk<T,E>::insertVertex(const T& Vertex){ if(numVertices == maxVertices)return false; NodeTable[numVertices].data = Vertex; numVertices++; return true; } template<class T,class E> bool Graphlnk<T,E>::insertEdge(int v1,int v2){ if(v1 >=0 && v1 < numVertices && v2>=0 && v2 < numVertices){ Edge<T,E> *q, *p = NodeTable[v1].adj; while(p!=NULL&& p->dest!=2) p = p->link; if(p!=NULL) return false; p = new Edge<T,E>; q = new Edge<T,E>; p->dest = v2; p->link = NodeTable[v1].adj; NodeTable[v1].adj = p; q->dest = v1; q->link = NodeTable[v2].adj; NodeTable[v2].adj = q; numEdges++; return true; } } template <class T, class E> /*void BFS(Graphlnk<T,E>& G,T& v) { int i,w,n=G.getVnum(); //此处需修改,类中没定义该函数 bool *visited=new bool[n]; LinkedQueue<int> Q; printf("\n广度优先搜索顺序为:\n"); for(i=0; i<n; i++) visited[i]=false; int loc = G.getVertexPos(v); cout << G.getValue(loc) << " " ; visited[loc] = true; Q.EnQueue(loc); while(!Q.IsEmpty()){ Q.DeQueue(loc); w = G.getFirstNeighbor(loc); while(w != -1){ if(visited[w]==false){ cout << G.getValue(w)<< " "; visited[w] = true; Q.EnQueue(w); } w = G.getNextNeighbor(loc,w); } } }*/
图的邻接表的类实现
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。