首页 > 代码库 > 图论模板简单整理
图论模板简单整理
唔,图论部分暂时就看到这里了,整理一下最近学的东西
//最短路//dijkstravoid dijkstra() { memset(vis,0,sizeof(vis)); for(int i = 1;i <= n;i++) { d[i] = -1; } d[n] = 1; for(int k = 1;k <= n;k++) { double maxv = -1; int x = n; for(int i = 1;i <= n;i++) if(!vis[i] && d[i] > maxv) { maxv = d[x = i]; } vis[x] = true; for(int i = 1;i <= n;i++) if(!vis[i] && p[x][i] >= 0) { if(d[i] == -1) d[i] = d[x] * p[x][i]; else d[i] = max(d[i],d[x] * p[x][i]); } }}//dijkstra + heapvoid dijkstra(int *v) { memset(vis,0,sizeof(vis)); for(int i = 1;i <= n;i++) d[i] = INF; d[1] = 0; priority_queue<Node> q; q.push(Node(d[1],1)); while(!q.empty()) { Node now = q.top(); q.pop(); int x = now.b; if(vis[x]) continue; vis[x] = true; for(int i = first[x];i != 0;i = nxt[i]) { if(d[v[i]] > d[x] + w[i]) { d[v[i]] = d[x] + w[i]; q.push(Node(d[v[i]],v[i])); } } }}//bellman-fordvoid bellman_ford() { for(int i = 0;i < M;i++) d[i] = INF; d[0] = 0; for(int i = 0;i < M;i++) { for(int j = 0;j < M;j++) { for(int k = 0;k < M;k++) if(dist[j][k] < INF) { if(d[j] < INF) { d[k] = min(d[k],d[j] + dist[j][k]); } } } } printf("%.2f\n",d[M - 1]);}//SPFAvoid spfa(int *v,int *d) { memset(vis,0,sizeof(vis)); for(int i = 1;i <= N;i++) d[i] = INF; d[X] = 0; queue<int> q; q.push(X); while(!q.empty()) { int u = q.front(); q.pop(); vis[u] = false; for(int i = first[u];i != 0;i = nxt[i]) { if(d[v[i]] > d[u] + w[i]) { d[v[i]] = d[u] + w[i]; if(!vis[v[i]]) { vis[v[i]] = true; q.push(v[i]); } } } }}//欧拉路和欧拉回路//寻找欧拉路并且输出路径void dfs(int now) { for(int i = 0;i < e[now].size();i++) { if(e[now][i].vis == 0) { e[now][i].vis = 1; dfs(e[now][i].v); ans.push(e[now][i].str); } }}//网络流//标号法//Ford-Fulkersonvoid solve() { memset(flow,0,sizeof(flow)); alpha[s] = INF; while(1) { //初始化标号 for(int i = 1;i <= t;i++) pre[i] = -2; pre[s] = -1; //初始化队列,源点入列 qs = 0; qe = 1; q[qs] = s; //标号过程 while(qs < qe && pre[t] == -2) { //终点没有被标号并且队列非空 int v = q[qs]; qs++; //printf("now v is %d\n",v); for(int i = 1;i <= t;i++) { //如果目标点没有被标号并且还有残余流量 if(pre[i] == -2 && dist[v][i] - flow[v][i] != 0) { pre[i] = v; alpha[i] = min(alpha[v],dist[v][i] - flow[v][i]); q[qe++] = i; } } } //没有找到到汇点的增广路,退出 if(pre[t] == -2) { break; } //逆向更新 int aval = alpha[t]; for(int i = t;pre[i] != -1;i = pre[i]) { flow[pre[i]][i] += aval; flow[i][pre[i]] = -flow[pre[i]][i]; } } //统计流量 int ans = 0; for(int i = 1;i <= n;i++) { ans += flow[i][t]; } printf("%d\n",ans);}//dinicbool bfs() { qs = qe = 0; q[qe++] = s; memset(level,0,sizeof(level)); level[s] = 1; while(qs < qe) { int v = q[qs++]; if(v == t) break; for(int i = s;i <= t;i++) if(cap[v][i] && !level[i]) { level[i] = level[v] + 1; q[qe++] = i; } } return level[t];} int dfs(int now,int alpha) { int sum = 0; if(now == t) return alpha; for(int i = s;i <= t;i++) { if(level[i] == level[now] + 1 && alpha && cap[now][i]) { int ret = dfs(i,min(alpha,cap[now][i])); cap[now][i] -= ret; cap[i][now] += ret; alpha -= ret; sum += ret; } } return sum;} void dinic() { int ans = 0; while(bfs()) ans += dfs(s,INT_MAX); printf("%d\n",ans);}//混合图欧拉回路的判断//先把所有的边看成是有向边,判断所有的点入度和出度之差是否是偶数,如果有奇数出现那么就不是欧拉回路。//然后去掉图中所有的有向边,建立虚拟的源点和汇点,如果剩下的点中有入度大于出度的,就建立到汇点的边,容量为入度出度之差/2,如果有出度大于入读的,就建立到源点的边,容量同样为入度和出度之差的一半,做一遍最大流,流量和要调换的边的数量相等。//满流的边需要调换using namespace std; typedef long long LL;const int maxn = 205;const int INF = INT_MAX / 3; struct Edge { int u,v,cap; Edge(int u,int v,int cap):u(u),v(v),cap(cap) {}}; int n,m,incnt[maxn],outcnt[maxn];int deg[maxn],s,t;vector<Edge> edges;vector<int> e[maxn]; void adde(int u,int v,int w) { int m = edges.size(); edges.push_back(Edge(u,v,w)); edges.push_back(Edge(v,u,0)); e[u].push_back(m); e[v].push_back(m ^ 1);} int level[maxn],q[maxn * 2],qs,qe;bool bfs() { //建立层次网络 memset(level,0,sizeof(level)); level[s] = 1; qs = qe = 0; q[qe++] = s; while(qs < qe) { int now = q[qs++],nm = e[now].size(); if(now == t) break; for(int i = 0;i < nm;i++) { Edge &ne = edges[e[now][i]]; if(ne.cap && level[ne.v] == 0) { level[ne.v] = level[now] + 1; q[qe++] = ne.v; } } } return level[t];} int dfs(int now,int alpha) { if(now == t) return alpha; int sum = 0,nm = e[now].size(); for(int i = 0;i < nm;i++) { Edge &ne = edges[e[now][i]]; if(level[now] + 1 == level[ne.v] && ne.cap && alpha) { int ret = dfs(ne.v,min(alpha,ne.cap)); ne.cap -= ret; edges[e[now][i] ^ 1].cap += ret; sum += ret; alpha -= ret; } } if(sum == 0) level[now] = -1; return sum;} void dinic() { while(bfs()) dfs(s,INF);} bool solve() { s = 0; t = n + 1; //判断入度出度之差是否为偶数 for(int i = 1;i <= n;i++) { deg[i] = incnt[i] - outcnt[i]; if(deg[i] & 1) return false; } //建立容量网络 for(int i = 1;i <= n;i++) { //如果入度小于出度,建立从起点到这个点的边,容量为deg/2 if(deg[i] < 0) adde(s,i,-deg[i] / 2); //如果出度大于入读,建立从当前点到汇点的边,容量同样为deg/2 if(deg[i] > 0) adde(i,t,deg[i] / 2); } //计算最大流 dinic(); //判断从源点出发的所有边是否满流 int m = e[s].size(); for(int i = 0;i < m;i++) { if(edges[e[s][i]].cap != 0) return false; } return true;} int main() { int T; scanf("%d",&T); while(T--) { scanf("%d%d",&n,&m); edges.clear(); for(int i = 0;i <= n + 1;i++) e[i].clear(); memset(incnt,0,sizeof(incnt)); memset(outcnt,0,sizeof(outcnt)); for(int i = 1;i <= m;i++) { int u,v,c; scanf("%d%d%d",&u,&v,&c); //先将无向边全部作为有向边处理 incnt[v]++; outcnt[u]++; //无向边存起来 if(c == 0) adde(u,v,1); } if(solve()) puts("possible"); else puts("impossible"); } return 0;}//求最小割是否唯一//判断方法是先做一遍最大流求最小割,然后从源点和汇点分别遍历所有能够到达的点,看是否覆盖了所有的点,如果覆盖了所有的点,那就是唯一的,否则就是不唯一的。void solve() { //先做一遍最大流 while(bfs()) dfs(s,INF); //分别从起点和终点做一遍bfs memset(vis,0,sizeof(vis)); qs = qe = 0; q[qe++] = s; vis[s] = true; while(qs < qe) { int now = q[qs++]; for(int i = first[now];~i;i = nxt[i]) { if(cap[i] && !vis[v[i]]) { vis[v[i]] = true; q[qe++] = v[i]; } } } qs = qe = 0; q[qe++] = t; vis[t] = true; while(qs < qe) { int now = q[qs++]; for(int i = first[now];~i;i = nxt[i]) { if(cap[i ^ 1] && !vis[v[i]]) { vis[v[i]] = true; q[qe++] = v[i]; } } } for(int i = 1;i <= n;i++) { if(!vis[i]) { puts("AMBIGUOUS"); return; } } puts("UNIQUE");}//带容量限制的无源点和汇点的网络流//建立虚拟的源点和汇点,因为忽略掉了容量下界之后会导致流量不平衡,所以对于每个u,v,u多出来的流量流到汇点,v不够的流量从源点补流typedef long long LL;const int maxn = 205;const int maxm = maxn * maxn;const int INF = INT_MAX / 3;int cap[maxn][maxn],flow[maxn][maxn],low[maxm];int q[maxn],alpha[maxn],pre[maxn];int uu[maxm],vv[maxm];int n,m,s,t,qs,qe;void solve() { memset(flow,0,sizeof(flow)); while(1) { qs = qe = 0; for(int i = s;i <= t;i++) pre[i] = -2; pre[s] = -1; alpha[s] = INF; q[qe++] = s; while(qs < qe) { int now = q[qs++]; for(int i = s;i <= t;i++) { if(cap[now][i] - flow[now][i] != 0 && pre[i] == -2) { q[qe++] = i; pre[i] = now; alpha[i] = min(alpha[now],cap[now][i] - flow[now][i]); } } } if(pre[t] == -2) break; for(int i = t;pre[i] != -1;i = pre[i]) { flow[pre[i]][i] += alpha[t]; flow[i][pre[i]] -= alpha[t]; } } bool ok = true; for(int i = s + 1;i <= t;i++) { if(cap[s][i] - flow[s][i]) ok = false; } for(int i = s;i < t;i++) if(cap[i][t] - flow[i][t]) ok = false; if(!ok) puts("NO"); else { puts("YES"); for(int i = 0;i < m;i++) { printf("%d\n",flow[uu[i]][vv[i]] + low[i]); } }}int main() { scanf("%d%d",&n,&m); s = 0; t = n + 1; memset(cap,0,sizeof(cap)); for(int i = 0;i < m;i++) { int u,v,l,c; scanf("%d%d%d%d",&u,&v,&l,&c); low[i] = l; cap[u][v] += c - l; cap[s][v] += l; cap[u][t] += l; uu[i] = u; vv[i] = v; } solve(); return 0;}//二分图最大匹配int dfs(int now) { for(int i = 1;i <= cnty;i++) if(g[now][i] && !vis[i]) { vis[i] = true; if(!by[i] || dfs(by[i])) { bx[now] = i; by[i] = now; return 1; } } return 0;} int solve() { int ret = 0; memset(bx,0,sizeof(bx)); memset(by,0,sizeof(by)); for(int i = 1;i <= cntx;i++) if(!bx[i]) { memset(vis,0,sizeof(vis)); ret += dfs(i); } return ret;}//最小点权覆盖->最小割+拆点//求最大独立集 最大独立点集 = 点数 - 最大匹配数注意//最小点覆盖 == 最大匹配//最小路径覆盖 = 顶点数 - 最大匹配
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。