首页 > 代码库 > poj2115--C Looooops(扩展gcd)
poj2115--C Looooops(扩展gcd)
C Looooops
Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 17740 | Accepted: 4600 |
Description
A Compiler Mystery: We are given a C-language style for loop of type
I.e., a loop which starts by setting variable to value A and while variable is not equal to B, repeats statement followed by increasing the variable by C. We want to know how many times does the statement get executed for particular values of A, B and C, assuming that all arithmetics is calculated in a k-bit unsigned integer type (with values 0 <= x < 2k) modulo 2k.
for (variable = A; variable != B; variable += C) statement;
I.e., a loop which starts by setting variable to value A and while variable is not equal to B, repeats statement followed by increasing the variable by C. We want to know how many times does the statement get executed for particular values of A, B and C, assuming that all arithmetics is calculated in a k-bit unsigned integer type (with values 0 <= x < 2k) modulo 2k.
Input
The input consists of several instances. Each instance is described by a single line with four integers A, B, C, k separated by a single space. The integer k (1 <= k <= 32) is the number of bits of the control variable of the loop and A, B, C (0 <= A, B, C < 2k) are the parameters of the loop.
The input is finished by a line containing four zeros.
The input is finished by a line containing four zeros.
Output
The output consists of several lines corresponding to the instances on the input. The i-th line contains either the number of executions of the statement in the i-th instance (a single integer number) or the word FOREVER if the loop does not terminate.
Sample Input
3 3 2 163 7 2 167 3 2 163 4 2 160 0 0 0
Sample Output
0232766FOREVER
Source
题目大意初始值是a,每一次加c ,可以对得到的值取模2^k,在值为b时结束,问最少会执行多少次,如过一直不会停FOREVER
由题中大意的到等式,假设一定会停,那么在循环x次后会等于b 也就是 (a + x*c)% (2^k)= b 。很明显的扩展gcd的题目,得到等式, a + c*x - b = y*(2^k) 也就是
求解 c*x - (2^k)*y = b-a ,问有没有整数解。
对于a*x1 + b*y1 = c ,用扩展gcd,求解 a*x1 + b*y1 = gad(a,b) = gcd(b,a%b) = a*y2 +b* (x2-a/b*y2)得到 x1 = y2 , y1 = ( x2 +a/b*y2 ) , 利用这个等式,可以推到b = 0 时,那是x = 1 , y = 0 ,最大公约数为a,在逐层返回,最终得到 a*x1 + b*y1 = gad(a,b) 的解,如果c%( gcd(a,b) ) == 0 那么a*x1 + b*y1 = c有整数解,令d = gcd(a,b),d = b / d.最小的正整数解围 x = ( x%d +d )%d.
#include <cstdio>#include <cstring>#include <algorithm>#define LL __int64using namespace std;void gcd(LL a,LL b,LL &d,LL &x,LL &y){ if(b == 0) { d = a ; x = 1 ; y = 0 ; } else { gcd(b,a%b,d,y,x); y = -y ; x = -x ; y += a/b*x ; } return ;}int main(){ LL k , a , b , c , d , x , y ; while(scanf("%I64d %I64d %I64d %I64d", &a, &b, &c, &k)!=EOF) { if(a == 0 && b == 0 && c == 0 && k == 0) break; k = ( (LL)1 )<<k ; gcd(c,k,d,x,y); if( (b-a)%d ) printf("FOREVER\n"); else { x = (b-a)/d*x ; k = k/d ; x = (x%k+k)%k ; printf("%I64d\n", x); } } return 0;}
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。