首页 > 代码库 > 基于边缘的分割

基于边缘的分割

 

 

边缘检测是图像分割的另一种重要方法,利用图像灰度级在边缘处的突变,找到目标物体的边缘,图像中边缘处像素的灰度值不连续,这种不连续性可通过求导数来检测到。对于阶跃状边缘,其位置对应一阶导数的极值点,对应二阶导数的过零点(零交叉点)。因此常用微分算子进行边缘检测。常用的一阶微分算子有Roberts算子、Prewitt算子和Sobel算子,二阶微分算子有Laplace算子和Kirsh算子等。在实际中各种微分算子常用小区域模板来表示,微分运算是利用模板和图像卷积来实现。这些算子对噪声敏感,只适合于噪声较小不太复杂的图像。边缘检测可分为滤波,增强,检测,定位四个步骤。在实际的图像分割中,往往只用到一阶和二阶导数,虽然,原理上,可以用更高阶的导数,但是,因为噪声的影响,在纯粹二阶的导数操作中就会出现对噪声的敏感现象,三阶以上的导数信息往往失去了应用价值。二阶导数还可以说明灰度突变的类型。在有些情况下,如灰度变化均匀的图像,只利用一阶导数可能找不到边界,此时二阶导数就能提供很有用的信息。二阶导数对噪声也比较敏感,解决的方法是先对图像进行平滑滤波,消除部分噪声,再进行边缘检测。不过,利用二阶导数信息的算法是基于过零检测的,因此得到的边缘点数比较少,有利于后继的处理和识别工作。

微分边缘检测算子

一阶微分算子

1 Roberts算子

 Roberts算子是利用局部差分算子来寻求边缘的算子。公式:

技术分享

技术分享

因为

技术分享

从图像处理的实际效果来看,边缘定位较准,对噪声敏感。适用于边缘明显且噪声较少的图像分割。Roberts边缘检测算子是一种利用局部差分算子寻找边缘的算子,Robert算子图像处理后结果边缘不是很平滑。经分析,由于Robert算子通常会在图像边缘附近的区域内产生较宽的响应,故采用上述算子检测的边缘图像常需做细化处理,边缘定位的精度不是很高。

2prewitt

Prewitt算子是一种一阶微分算子的边缘检测,利用像素点上下、左右邻点的灰度差,在边缘处达到极值检测边缘,去掉部分伪边缘,对噪声具有平滑作用 。其原理是在图像空间利用两个方向模板与图像进行邻域卷积来完成的,这两个方向模板一个检测水平边缘,一个检测垂直边缘。

 对数字图像f(x,y),Prewitt算子的定义如下:

G(i)=|[f(i-1,j-1)+f(i-1,j)+f(i-1,j+1)]-[f(i+1,j-1)+f(i+1,j)+f(i+1,j+1)]|
G(j)=|[f(i-1,j+1)+f(i,j+1)+f(i+1,j+1)]-[f(i-1,j-1)+f(i,j-1)+f(i+1,j-1)]|
则 P(i,j)=max[G(i),G(j)]或 P(i,j)=G(i)+G(j)
两个卷积模板
技术分享

 

prewitt算子对噪声有抑制作用,抑制噪声的原理是平均像素,对图像具有平滑作用,但是像素的平均相当于对图像进行低通滤波,所以对边缘的定位不如roberts算子。

3 sobel

用来运算图像亮度函数的梯度的近似值, Sobel算子是典型的基于一阶导数的边缘检测算子,由于该算子中引入了类似局部平均的运算,因此对噪声具有平滑作用,能很好的消除噪声的影响。Sobel算子对于象素的位置的影响做了加权,与Prewitt算子、Roberts算子相比因此效果更好。

Sobel算子包含两组3x3的矩阵,分别为横向及纵向模板,将之与图像作平面卷积,即可分别得出横向及纵向的亮度差分近似值。实际使用中,常用如下两个模板来检测图像边缘。

                       

检测水平边沿 横向模板 :技术分享           检测垂直平边沿 纵向模板:技术分享

 

图像的每一个像素的横向及纵向梯度近似值可用以下的公式结合,来计算梯度的大小。

 

                                                                             技术分享

然后可用以下公式计算梯度方向。

                                                                           技术分享

在以上例子中,如果以上的角度Θ等于零,即代表图像该处拥有纵向边缘,左方较右方暗。

缺点是Sobel算子并没有将图像的主题与背景严格地区分开来,换言之就是Sobel算子并没有基于图像灰度进行处理,由于Sobel算子并没有严格地模拟人的视觉生理特征,所以提取的图像轮廓有时并不能令人满意。

 4 Laplacian算子

laplace算子是一种各向同性算子是个二阶微分算子,它对孤立的像素点比对边缘的响应要更强烈,因此只适用于无噪声的图像,存在噪声的情况下,要先进行低通滤波。所以通常把laplace算子和平滑算子结合起来。

 

拉普拉斯算子也是最简单的各向同性微分算子,具有旋转不变性。一个二维图像函数的拉普拉斯变换是各向同性的二阶导数,定义

技术分享                                                                           

了更适合于数字图像处理,将拉式算子表示为离散形式:

技术分享

离散拉普拉斯算子的模板:技术分享, 其扩展模板:技术分享 。

5 canny算子

详见http://www.cnblogs.com/cfantaisie/archive/2011/06/05/2073168.html

 

基于边缘的分割