首页 > 代码库 > HDU 1394 Minimum Inversion Number(线段树求最小逆序数对)

HDU 1394 Minimum Inversion Number(线段树求最小逆序数对)

HDU 1394 Minimum Inversion Number(线段树求最小逆序数对)

ACM

题目地址:HDU 1394 Minimum Inversion Number

题意: 
给一个序列由[1,N]构成,可以通过旋转把第一个移动到最后一个。 
问旋转后最小的逆序数对。

分析: 
注意,序列是由[1,N]构成的,我们模拟下旋转,总的逆序数对会有规律的变化。 
求出初始的逆序数对再循环一遍就行了。

至于求逆序数对,我以前用归并排序解过这道题:点这里。 
不过由于数据范围是5000,所以完全可以用线段树或树状数组来做:求某个数的作为逆序数对的后面部分的对数,可以在前面的数中查询小于这个数的数的个数。 
直接在线一边加一边查就行了,复杂度为O(nlogn)。

不过老实说,这题的单个数没有太大,不然线段树和树状数组都开不下的。所以求逆序数对的最佳算法应该是归并排序解。

代码

/*
*  Author:      illuz <iilluzen[at]gmail.com>
*  Blog:        http://blog.csdn.net/hcbbt
*  File:        1394_segment_tree.cpp
*  Create Date: 2014-08-05 10:08:42
*  Descripton:  segment tree 
*/

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
#define repf(i,a,b) for(int i=(a);i<=(b);i++)

#define lson(x) ((x) << 1)
#define rson(x) ((x) << 1 | 1)

typedef long long ll;

const int N = 5010;
const int ROOT = 1;

// below is sement point updated
struct seg {
    ll w;
};

struct segment_tree { 
    seg node[N << 2];

    void update(int pos) {
        node[pos].w = node[lson(pos)].w + node[rson(pos)].w;
    }

    void build(int l, int r, int pos) {
        if (l == r) {
            node[pos].w = 0;
            return;
        }
        int m = (l + r) >> 1;
        build(l, m, lson(pos));
        build(m + 1, r, rson(pos));
        update(pos);
    }

    // add the point x with y
    void modify(int l, int r, int pos, int x, ll y) {
        if (l == r) {
            node[pos].w += y;
            return;
        }
        int m = (l + r) >> 1;
        if (x <= m)
            modify(l, m, lson(pos), x, y);
        else
            modify(m + 1, r, rson(pos), x, y);
        update(pos);
    }

    // query the segment [x, y]
    ll query(int l, int r, int pos, int x, int y) {
        if (x <= l && r <= y)
            return node[pos].w;
        int m = (l + r) >> 1;
        ll res = 0;
        if (x <= m)
            res += query(l, m, lson(pos), x, y);
        if (y > m)
            res += query(m + 1, r, rson(pos), x, y);
        return res;
    }

    // remove the point that the sum of [0, it] is x, return its id
    int remove(int l, int r, int pos, ll x) {
        if (l == r) {
            node[pos].w = 0;
            return l;
        }
        int m = (l + r) >> 1;
        int res;
        if (x < node[lson(pos)].w)
            res = remove(l, m, lson(pos), x);
        else
            res = remove(m + 1, r, rson(pos), x - node[lson(pos)].w);
        update(pos);
        return res;
    }
} sgm;

int n, a[N], b[N], t, sum, mmin;

int main() {
    while (~scanf("%d", &n)) {
        sgm.build(1, n, ROOT);
        sum = 0;
        repf (i, 1, n)
            scanf("%d", &a[i]);
        for (int i = n; i >= 1; i--) {
            b[i] = sgm.query(1, n, ROOT, 1, a[i] + 1);
            sum += b[i];
            sgm.modify(1, n, ROOT, a[i] + 1, 1);
        }
        mmin = sum;
        repf (i, 1, n) {
            sum = sum - a[i] + (n - 1 - a[i]);
            mmin = min(mmin, sum);
        }
        cout << mmin << endl;
    }
    return 0;
}