首页 > 代码库 > Minimum Inversion Number_最小逆序数
Minimum Inversion Number_最小逆序数
Problem Description
The inversion number of a given number sequence a1, a2, ..., an is the number of pairs (ai, aj) that satisfy i < j and ai > aj.
For a given sequence of numbers a1, a2, ..., an, if we move the first m >= 0 numbers to the end of the seqence, we will obtain another sequence. There are totally n such sequences as the following:
a1, a2, ..., an-1, an (where m = 0 - the initial seqence)
a2, a3, ..., an, a1 (where m = 1)
a3, a4, ..., an, a1, a2 (where m = 2)
...
an, a1, a2, ..., an-1 (where m = n-1)
You are asked to write a program to find the minimum inversion number out of the above sequences.
For a given sequence of numbers a1, a2, ..., an, if we move the first m >= 0 numbers to the end of the seqence, we will obtain another sequence. There are totally n such sequences as the following:
a1, a2, ..., an-1, an (where m = 0 - the initial seqence)
a2, a3, ..., an, a1 (where m = 1)
a3, a4, ..., an, a1, a2 (where m = 2)
...
an, a1, a2, ..., an-1 (where m = n-1)
You are asked to write a program to find the minimum inversion number out of the above sequences.
Input
The input consists of a number of test cases. Each case consists of two lines: the first line contains a positive integer n (n <= 5000); the next line contains a permutation of the n integers from 0 to n-1.
Output
For each case, output the minimum inversion number on a single line.
Sample Input
10
1 3 6 9 0 8 5 7 4 2
Sample Output
16
【题意】给出n个数,求其在第一个数到最后一个的过程中,最小的逆序数是多少
【思路】建立一颗空树,在插入每个数的时候,统计这个数前面有多少数大于他,当a[i]由第一个变为最后一个时,要加上a[i]后面大于a[i]的数的个数,有n-1-a[i]个,要减去a[i]后面小于a[i]的数的个数,有a[i]个(注意i是从0开始的)
#include<iostream> #include<string.h> #include<stdio.h> using namespace std; const int N=5005; struct node { int l,r; int num; }tree[N*4]; void build(int k,int l,int r)//建空树 { int mid=(l+r)/2; tree[k].l=l; tree[k].r=r; tree[k].num=0; if(l==r) return ; build(k*2,l,mid); build(k*2+1,mid+1,r); } void updata(int k,int c)//插入 { if(tree[k].l==c&&tree[k].r==c) { tree[k].num=1; return ; } int mid=(tree[k].l+tree[k].r)/2; if(c<=mid) updata(k*2,c); else updata(k*2+1,c); tree[k].num=tree[k*2].num+tree[k*2+1].num; } int get_sum(int k,int c,int n)//统计 { if(c<=tree[k].l&&tree[k].r<=n) return tree[k].num; else { int mid=(tree[k].l+tree[k].r)/2; int sum1=0,sum2=0; if(c<=mid) sum1=get_sum(k*2,c,n); if(n>mid) sum2=get_sum(k*2+1,c,n); return sum1+sum2; } } int main() { int n; while(scanf("%d",&n)>0) { int a[N]; build(1,0,n-1); int ans=0; for(int i=0;i<n;i++) { scanf("%d",&a[i]); ans+=get_sum(1,a[i]+1,n-1); updata(1,a[i]); } int minx=ans; for(int i=0;i<n;i++) { ans=ans+n-2*a[i]-1; //当a[i]由第一个变为最后一个时,要加上a[i]后面大于a[i]的数的个数,有n-1-a[i]个,要 if(ans<minx) //减去a[i]后面小于a[i]的数的个数,有a[i]个(注意i是从0开始的) minx=ans; } printf("%d\n",minx); } return 0; }
Minimum Inversion Number_最小逆序数
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。