首页 > 代码库 > Matrix multiplication hdu4920
Matrix multiplication hdu4920
Problem Description
Given two matrices A and B of size n×n, find the product of them.
bobo hates big integers. So you are only asked to find the result modulo 3.
bobo hates big integers. So you are only asked to find the result modulo 3.
Input
The input consists of several tests. For each tests:
The first line contains n (1≤n≤800). Each of the following n lines contain n integers -- the description of the matrix A. The j-th integer in the i-th line equals Aij. The next n lines describe the matrix B in similar format (0≤Aij,Bij≤109).
The first line contains n (1≤n≤800). Each of the following n lines contain n integers -- the description of the matrix A. The j-th integer in the i-th line equals Aij. The next n lines describe the matrix B in similar format (0≤Aij,Bij≤109).
Output
For each tests:
Print n lines. Each of them contain n integers -- the matrix A×B in similar format.
Print n lines. Each of them contain n integers -- the matrix A×B in similar format.
Sample Input
1
0
1
2
0 1
2 3
4 5
6 7
Sample Output
0 0 1 2 1
1,忽视0 去做。
1 #include"stdio.h" 2 #include"string.h" 3 int a[801][801],b[801][801]; 4 int a1[801][801],b1[801][801]; 5 int c[801][801]; 6 int main() 7 { 8 int n,i,j,k; 9 while(scanf("%d",&n)==1)10 {11 memset(a,0,sizeof(a));12 memset(b,0,sizeof(b));13 memset(c,0,sizeof(c));14 memset(a1,0,sizeof(a1));15 memset(b1,0,sizeof(b1));16 for(i=1;i<=n;i++)17 for(j=1;j<=n;j++)18 {19 scanf("%d",&a[i][j]);20 a[i][j]%=3;21 }22 for(i=1;i<=n;i++)23 for(j=1;j<=n;j++)24 {25 scanf("%d",&b[i][j]);26 b[i][j]%=3;27 }28 for(i=1;i<=n;i++)29 {30 int pre=-1;31 for(j=n;j>=0;j--)32 {33 a1[i][j]=pre;34 if(a[i][j])35 pre=j;36 }37 }38 for(i=1;i<=n;i++)39 {40 int pre=-1;41 for(j=n;j>=0;j--)42 {43 b1[i][j]=pre;44 if(b[i][j])45 pre=j;46 }47 }48 for(i=1;i<=n;i++)49 for(j=a1[i][0];j+1;j=a1[i][j])50 for(k=b1[j][0];k+1;k=b1[j][k])51 c[i][k]+=a[i][j]*b[j][k];52 for(i=1;i<=n;i++)53 {54 for(j=1;j<n;j++)55 printf("%d ",c[i][j]%3);56 printf("%d\n",c[i][j]%3);57 }58 }59 return 0;60 }
我们知道内存中二维数组是以行为单位连续存储的,逐列访问将会每次跳1000*4(bytes)。根据cpu cache的替换策略,将会有大量的cache失效。
时间居然会相差很多。 可见利用好cpu cache优化我们的程序,是非常有必要掌握的技能。
平时写程序时,也应当尽量使cpu对内存的访问,是尽可能连续的
/* Name: Matrix multiplication Copyright: Shangli Cloud Author: Shangli Cloud Date: 05/08/14 20:46 Description: 转置 *//*#include"iostream"#include"cstdio"#include"cstring"using namespace std;const int ms=801;const int mod=3;*/#include"stdio.h"#include"string.h"//int a[ms][ms],b[ms][ms],c[ms][ms];#define mod 3int a[801][801],b[801][801],c[801][801];int main(){ int n,x,i,j,k; while(scanf("%d",&n)==1) { for(i=1;i<=n;i++) for(j=1;j<=n;j++) { scanf("%d",&x); a[i][j]=x%mod; } for(i=1;i<=n;i++) for(j=1;j<=n;j++) { scanf("%d",&x); b[j][i]=x%mod; } for(i=1;i<=n;i++) for(j=1;j<=n;j++) { c[i][j]=0; for(k=1;k<=n;k++) { //c[i][j]+=a[i][k]*b[j][k]%mod;多了个mod就超时, c[i][j]+=a[i][k]*b[j][k];//1656ms,多个Mod就超过2s. } if(j<n) printf("%d ",c[i][j]%mod); else printf("%d\n",c[i][j]%mod); } } return 0;}
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。