首页 > 代码库 > 数据结构精要------直接选择和堆排序算法

数据结构精要------直接选择和堆排序算法

上篇总结中主要实践了算法的内排序的交换排序,那么接下来我们继续实践选择排序的两种:直接选择和堆排序算法。

-----直接选择排序


package com.sort;

/**
 * 直接选择排序算法
 * @author weixing-yang
 *
 * 算法思路:
 *  首先找出最大元素,将其与a[n-1]位置置换。
 *  然后在余下的n-1个元素中寻找最大元素,将其与a[n-2]位置置换。
 *  如此进行下去,知道n个元素排序完成。
 */
public class SelectSort {
	
	public void selectSort(int[] arr, int n){
		int i,j,k;
		int temp = 0;
		for (i= 0; i < n -1; i++) {
			for(k = i,j = i+1; j < n; j++){
				if(arr[k] > arr[j])
					k = j;
			}
			if( k != j){
				temp = arr[k];
				arr[k] = arr[i];
				arr[i] = temp;
			}
		}
	}
}

-----堆排序

堆排序是树型选择排序的改进,它使用的辅助空间较少,仅需要一个元素用于空间交换。

什么是堆?堆:根结点的关键码值或者大于左右子树或者都小于左右子树,而且左右子树也是堆。如果每个结点的值都大于左右子树关键码值,称之为大顶堆。每个结点的值都小于左右子树的关键码值,称之为小顶堆。堆是一个完全二叉树

堆排序有两个步骤:(1)初建堆;(2)调整堆

下面代码实践:

package com.sort;

/**
 * 堆排序算法
 * @author weixing-yang
 *
 * 算法思路:
 * 先将初始文件R[0:n-1]建成一个大根堆,此堆为初始的无序区 ; 
 * 再将关键字最大的记录R[0](即堆顶)和无序区的最后一个记录R[n-1]交换,
 * 由此得到新的无序区R[0:n-2]和有序区R[n-1],且满足R[0:n-2].keys≤R[n-1].key ; 
 * 由于交换后新的根R[0]可能违反堆性质,故应将当前无序区R[0:n-2]调整为堆(重建堆)。 
 * 然后再次将R[0:n-2]中关键字最大的记录R[0]和该区间的最后一个记录R[n-2]交换,
 * 由此得到新的无序区R[0:n-3]和有序区R[n-2:n-1],且仍满足关系R[0..n-3].keys≤R[n-2:n-1].keys,
 * 同样要将R[0:n-3]调整为堆…… 直到无序区只有一个元素R[0]时,R[0:n-1]为有序序列。
 */
public class HeapSort {
	
	// 排序函数  
    public void heapSort(int[] array) {  
        // 对数组进行筛选,建成一个大顶堆  
        double len = array.length - 1;  
        for (int i = (int) Math.floor(len / 2); i > 0; i--) {  
            heapAdjust(array, i, array.length - 1);  
        }  
        for (int i = array.length - 1; i > 0; i--) {  
            // 将堆顶元素与最后一个元素调换位置,即输出最大值  
            swap(array, 1, i);  
            // 将最后一位剔出,数组最大下标变为i-1。自队顶至叶子进行调整,形成一个新堆,此过程称为筛选  
            heapAdjust(array, 1, i - 1);  
        }  
    }  
  
    // 建堆函数,认为【s,m】中只有 s  
    // 对应的关键字未满足大顶堆定义,通过调整使【s,m】成为大顶堆
    public void heapAdjust(int[] array, int s, int m) {  
        // 用0下标元素作为暂存单元  
        array[0] = array[s];  
        // 沿孩子较大的结点向下筛选  
        for (int j = 2 * s; j <= m; j *= 2) {  
            // 保证j为较大孩子结点的下标,j < m 保证 j+1 <= m ,不越界  
            if (j < m && array[j] < array[j + 1]) {  
                j++;  
            }  
            if (!(array[0] < array[j])) {  
                break;  
            }  
            // 若S位较小,应将较大孩子上移  
            array[s] = array[j];  
            // 较大孩子的值变成S位的较小值,可能引起顶堆的不平衡,故对其所在的堆进行筛选  
            s = j;  
        }  
        // 若S位较大,则值不变;否则,S位向下移动至2*s、4*s、。。。  
        array[s] = array[0];  
    }  
  
    // 交换函数 
    public void swap(int[] array, int i, int j) {  
        int temp;  
        temp = array[i];  
        array[i] = array[j];  
        array[j] = temp;  
    }

}

-----测试函数

package com.sort;

public class Main {
	
	public static void main(String[] args){
		int[] array = {25, 36, 45,40, 12, 34, 55}; 
		int n = array.length;
		SelectSort select = new SelectSort();
		HeapSort heap = new HeapSort();
		long start = System.currentTimeMillis();
		select.selectSort(array, n);//直接选择排序
		//heap.heapSort(array);
		long end = System.currentTimeMillis();
		long sum = end - start;
		System.out.println("排序花费的总毫秒数:"+sum);
		for (int i = 0; i < array.length; i++) {
			System.out.print(array[i]+" ");
		}
	}
}

-----运行结果

排序花费的总毫秒数:0
12 25 34 36 40 45 55 
直接选择排序的时间复杂度是n2, 快速排序的时间复杂度是nlogn,空间复杂度是O(1)。


@@------->>下篇继续实践插入排序的两种排序算法