首页 > 代码库 > [codeforces 55]D. Beautiful numbers
[codeforces 55]D. Beautiful numbers
[codeforces 55]D. Beautiful numbers
试题描述
输入
The first line of the input contains the number of cases t (1?≤?t?≤?10). Each of the next t lines contains two natural numbers li and ri(1?≤?li?≤?ri?≤?9?·1018).
Please, do not use %lld specificator to read or write 64-bit integers in C++. It is preffered to use cin (also you may use %I64d).
输出
Output should contain t numbers — answers to the queries, one number per line — quantities of beautiful numbers in given intervals (from li to ri, inclusively).
输入示例
2 1 9 12 15
输出示例
9 2
数据规模及约定
见“输入”
题解
“能同时被所有数位上的数字整除”等价于“能被所有数位上数字的最大公约数整除”。于是设 f[i][k][m] 表示一个 i 位的数,所有数字的最小公倍数等于 k,且这个数为 m。等等,状态 m 都知道这个数了,那 dp 个啥?别着急,我们一步步优化。
我们知道 lcm(1, 2, 3, 4, 5, 6, 7, 8, 9) = 2520(就是1~9的最小公倍数),那么对于刚才 m 的那一维状态是没有必要太大的,将这维状态对 2520 取个模就好了,即 m 表示这个数对 mod 2520 的值。
还有,1~9 这些数中,所有可能出现的最小公倍数只有 48 个(这个不妨读者自己试一试),所以离散一波 k 就变成最大只有 48 的数了。
最后状态数大概是:19 * 48 * 2520 = 2298240。
#include <iostream> #include <cstdio> #include <cstdlib> #include <cstring> #include <cctype> #include <algorithm> using namespace std; #define LL long long LL read() { LL x = 0, f = 1; char c = getchar(); while(!isdigit(c)){ if(c == ‘-‘) f = -1; c = getchar(); } while(isdigit(c)){ x = x * 10 + c - ‘0‘; c = getchar(); } return x * f; } #define maxn 21 #define maxm 2521 #define maxc 49 int Lcm[maxc], cl, id[maxm], Gcd[maxm][maxm]; bool tmp[maxm]; LL f[maxn][maxc][maxm], ten[maxn]; int gcd(int x, int y){ return !y ? x : gcd(y, x % y); } int get(int l, int x) { int nl; if(!x && !l) nl = 0; if(x && l) nl = l * x / Gcd[l][x]; if(!x && l) nl = l; if(x && !l) nl = x; return nl; } int num[maxn]; LL sum(LL x) { int cnt = 0; LL tx = x; while(x) num[++cnt] = x % 10, x /= 10; LL ans = 0; int l = 1; for(int i = cnt; i; i--) { for(int j = 0; j < num[i]; j++) { int nl = get(l, j); for(int k = 0; k <= cl; k++) { int nnl = get(nl, Lcm[k]); LL t; if(i < cnt) t = (tx / ten[i] * ten[i] + ten[i-1] * j) % 2520; else t = ten[i-1] * j % 2520; for(int m = 0; m < maxm - 1; m += nnl) { int M = (m - t + 2520) % 2520; if(M < 0) continue; if(f[i-1][k][M]) ans += f[i-1][k][M]; } } } l = get(l, num[i]); } if(tx % l == 0) ans++; return ans; } int main() { for(int i = 1; i < maxm; i++) for(int j = 1; j < maxm; j++) Gcd[i][j] = gcd(i, j); tmp[1] = 1; for(int j = 2; j <= 9; j++) for(int x = maxm - 1; x; x--) if(tmp[x]) tmp[x*j/Gcd[x][j]] = 1; for(int i = 1; i < maxm; i++) if(tmp[i]) Lcm[++cl] = i, id[i] = cl; ten[0] = 1; for(int i = 1; i < maxn; i++) ten[i] = ten[i-1] * 10; f[0][0][0] = 1; for(int j = 0; j <= 9; j++) f[1][id[j]][j] = 1; for(int i = 1; i < maxn - 1; i++) for(int k = 0; k <= cl; k++) for(int m = 0; m < maxm; m++) if(f[i][k][m]) { int l = Lcm[k]; for(int x = 0; x <= 9; x++) { int nl = get(l, x); f[i+1][id[nl]][(ten[i]*x+m)%2520] += f[i][k][m]; } } int T = read(); while(T--) { LL l = read(), r = read(); printf("%I64d\n", sum(r) - sum(l - 1)); } return 0; }
[codeforces 55]D. Beautiful numbers