首页 > 代码库 > 八皇后问题——递归+回溯法

八皇后问题——递归+回溯法

    八皇后问题,是一个古老而著名的问题,是回溯算法的典型案例。该问题是国际西洋棋棋手马克斯·贝瑟尔于1848年提出:在8X8格的国际象棋上摆放八个皇后,使其不能互相攻击,即任意两个皇后都不能处于同一行、同一列或同一斜线上,问有多少种摆法。 高斯认为有76种方案。1854年在柏林的象棋杂志上不同的作者发表了40种不同的解,后来有人用图论的方法解出92种结果。
求解过程:
    采用遍历的办法,就是采用将每种情况都验证的办法最终找出问题的解,但是蛮力遍历的话,需要遍历的数据量太大,计算时间花费太大,所以在遍历的过程中使用回溯法去掉许多不可能的分支,使问题的规模减小许多。
    一个可行解可以这样表示,用一个数组pos[N](N表示皇后的个数,八皇后即为8)表示每一行的皇后应该放在第几列。从将第一个棋子放在第1行的第1列开始一直遍历完这个棋子固定在这个位置的所有解,然后再将第一行的棋子固定在第一行的第二列,再次遍历完所有的解,直到第一行的棋子放在最后的一列,再遍历完,那么所有的解就都找出来了。因为程序代码中已经注释非常详细,所以这里不再重复注释了。程序代码如下:

#include <iostream>
#include <bitset>
using namespace std;

#define N 4 /*设置棋盘宽度*/

char pos[N]; /*每一行的这一个棋子放置的位置:0~7*/
bitset<N> stat[N]; /*每一行的空闲位置(除去被行列对角线冲突的位置)*/
bitset<N> mask[N][N]; /*保存回溯过程中以前的状态,因为在对每一行回溯时当时的状态都不一样
					    所以这个单元的大小是stat的N倍,以便保存N行各自的初始状态*/
int g_count; /*统计有多少种解法*/

void print() /*打印出当前的可行解*/
{
    int i, j;
    cout<<endl;
    for(i=0; i < N; i++)
	{
        for(j=0; j < pos[i]; j++) 
			cout<<" - ";
        cout<<" $ ";
        for(j=pos[i]+1; j < N; j++) 
			cout<<" - ";
        cout<<endl;
    }
}

void queen(int n) /*皇后问题求解函数*/
{
    int i, j;
    if(~stat[n] == 0) /*如果这一行没有空闲位置,这个分支求解失败*/
		return;
 
    for(i=0; i < N; i++)
	{
        if(!stat[n].test(i)) /*test(i)测试第i个bit是否为1,为1返回ture*/
		{
            pos[n] = i; 
            if(n+1 == N) /*找到一个解*/
			{
                print();
                g_count++;
                return;
            }
            for(j=n+1; j < N; j++)
			{
                mask[n][j] = stat[j]; /*进行新的遍历前保存当前未探测行的空闲状态*/
				/*从j=n+1开始保存,前面j=0~n的位置已经保存过了,再保存意义也不大*/
                stat[j].set(i); /*纵向标记非空闲位置*/
                if(i+j-n < N) stat[j].set(i+j-n); /*正对角线方向标记非空闲位置*/
				/*正对角线直线方程:I=kN+b(k=1)->i=n+b->b=i-n==>i-n+j即表示新的I值*/
                if(i+n-j >= 0) stat[j].set(i+n-j); /*反对角线方向标记非空闲位置*/
				/*反对角线直线方程:I=kN+b(k=-1)->i=-n+b->b=i+n==>-(j)+i+n即表示新的I值*/
            }
            queen(n+1); /*本行探测完毕,进行下一行的探测*/
            for(j=n+1; j < N; j++) 
				stat[j] &= mask[n][j]; /*探测失败,回退(返回上一次的状态)*/
        }
    }
}
int main(int argc, char* argv[])
{
    int i,j;

    g_count=0;
    for(i=0;i<N;i++) 
		stat[i].reset();
    for(i=0; i < N; i++) 
		for(j=0; j < N; j++) 
			mask[i][j].reset();
    cout<<"result is:";
    queen(0);
    cout<<endl<<"总共有"<<g_count<<"种排法."<<endl<<endl;
	system("pause");

    return 0;
}

程序运行结果截图: