首页 > 代码库 > PCA的应用示例
PCA的应用示例
在 PCA 详细算法介绍 (http://blog.csdn.net/watkinsong/article/details/38536463) 中, 因为篇幅问题 没有给出详细的代码示例, 这里给出代码示例。
通过对人脸图像进行降维深入了解PCA算得使用。
首先看一下数据集, 我们有12张人脸图像, 用10张人脸训练PCA降维矩阵, 剩下的两张可以用作测试。
需要特别注意: 只能使用训练集样本进行所有的PCA训练过程。
这里所有的代码都采用 octave实现, 跟matlab应该是一致的。
1. 加载图像
%% Initialization clear ; close all; clc fprintf('this code will load 12 images and do PCA for each face.\n'); fprintf('10 images are used to train PCA and the other 2 images are used to test PCA.\n'); trainset = zeros(10, 32 * 32); % image size is : 32 * 32 m = 10; % number of samples for i = 1 : m img = imread(strcat(int2str(i), '.bmp')); img = double(img); trainset(i, :) = img(:); end
2. 特征向量做 normalization
%% before training PCA, do feature normalization mu = mean(trainset); trainset_norm = bsxfun(@minus, trainset, mu); sigma = std(trainset_norm); trainset_norm = bsxfun(@rdivide, trainset_norm, sigma);
3. 在做特征向量归一化的过程中, 我们为了以后使用归一化参数, 需要保存这些归一化参数。
比如这里可能需要保存mu 和 sigma, 这里我们已 mean face 的方式保存 mu, 因为本示例比较小, 所以没有保存 sigma, 这里保存mu 的目的也仅仅是 为了让大家看一下平均脸的样子。 如果在做项目的过程中, 可能训练PCA是分开进行的, 以后需要进行降维, 那么就需要保存这两个归一化参数。
%% we could save the mean face mu to take a look the mean face imwrite(uint8(reshape(mu, 32, 32)), 'mf.bmp');
看一下由10张人脸生成的平均脸:
是不是比较丑? 因为人脸太少了, 再来看看由5000个人脸图像生成的平均脸:
4. 计算降维矩阵
%% compute reduce matrix X = trainset_norm; % just for convience [m, n] = size(X); U = zeros(n); S = zeros(n); Cov = 1 / m * X' * X; [U, S, V] = svd(Cov); fprintf('compute cov done.\n');
5. 查看特征脸
降维矩阵U中的特征向量, 在关于人脸的降维中,又被称为特征脸, U 中的每个特征向量相当于找到的降维空间的一个方向。 利用U可以将特征映射到这个空间中。
这里我们把的U中的前几个特征向量保存下来, 看一下特征脸。 U 中的特征向量是按照特征值进行由大到小排序的, 这个排序的顺序也决定了对于降维的影响最大的向量放在最前面。
这里的 eigen face 和人脸的相似性比较高, 因为我们的样本数量比较少, 就10个样本。。。所以会出现这种相似度比较高的情况。
补充: 给出几张用5000张人脸图像训练得到的eigen face, 如下所示:
6. 降维
%% dimension reduction k = 100; % reduce to 100 dimension test = zeros(2, 32 * 32); for i = 1:2 img = imread(strcat(int2str(i + 10), '.bmp')); img = double(img); test(i, :) = img(:); end % test set need to do normalization test_norm = bsxfun(@minus, test, mu); test_norm = bsxfun(@rdivide, test_norm, sigma); % reduction Uk = U(:, 1:k); Z = test_norm * Uk; fprintf('reduce done.\n');
7. 还原特征(Reconstruction)
%% reconstruction %% for the test set images, we only minus the mean face, % so in the reconstruct process, we need add the mean face back Xp = Z * Uk'; % show reconstructed face for i = 1:5 face = Xp(i, :) + mu; face = reshape((face), 32, 32); imwrite(uint8(face), strcat('./reconstruct/', int2str(4000 + i), '.bmp')); end %% for the train set reconstruction, we minus the mean face and divide by standard deviation during the train % so in the reconstruction process, we need to multiby standard deviation first, % and then add the mean face back trainset_re = trainset_norm * Uk; % reduction trainset_re = trainset_re * Uk'; % reconstruction for i = 1:5 train = trainset_re(i, :); train = train .* sigma; train = train + mu; train = reshape(train, 32, 32); imwrite(uint8(train), strcat('./reconstruct/', int2str(i), 'train.bmp')); end
注: 这里我使用了训练样本为4000张, 因为样本数量太少还原的效果很差。
看一下特征还原的效果: 左边为原始图像, 右边为还原的图像
对于测试样本还原, 测试样本在降维之前减去了mean face, 所以在还原之后还要加上mean face才是真正的还原的图像。
对于训练样本还原, 因为训练样本即减去了mean face 还除以了 standard deviation, 所以在计算得到还原的样本特征后, 还首先要将特征 按元素乘上 standard deviation, 也就是 .* , 然后再加上mean face才是最后得到的真实的还原的数据。
看以下几个关于训练样本的还原: 同样左边为原始图像, 右边为还原之后的图像
整个工程的全部代码:
%% Initialization clear ; close all; clc fprintf('this code will load 12 images and do PCA for each face.\n'); fprintf('10 images are used to train PCA and the other 2 images are used to test PCA.\n'); m = 4000; % number of samples trainset = zeros(m, 32 * 32); % image size is : 32 * 32 for i = 1 : m img = imread(strcat('./img/', int2str(i), '.bmp')); img = double(img); trainset(i, :) = img(:); end %% before training PCA, do feature normalization mu = mean(trainset); trainset_norm = bsxfun(@minus, trainset, mu); sigma = std(trainset_norm); trainset_norm = bsxfun(@rdivide, trainset_norm, sigma); %% we could save the mean face mu to take a look the mean face imwrite(uint8(reshape(mu, 32, 32)), 'meanface.bmp'); fprintf('mean face saved. paused\n'); pause; %% compute reduce matrix X = trainset_norm; % just for convience [m, n] = size(X); U = zeros(n); S = zeros(n); Cov = 1 / m * X' * X; [U, S, V] = svd(Cov); fprintf('compute cov done.\n'); %% save eigen face for i = 1:10 ef = U(:, i)'; img = ef; minVal = min(img); img = img - minVal; max_val = max(abs(img)); img = img / max_val; img = reshape(img, 32, 32); imwrite(img, strcat('eigenface', int2str(i), '.bmp')); end fprintf('eigen face saved, paused.\n'); pause; %% dimension reduction k = 100; % reduce to 100 dimension test = zeros(10, 32 * 32); for i = 4001:4010 img = imread(strcat('./img/', int2str(i), '.bmp')); img = double(img); test(i - 4000, :) = img(:); end % test set need to do normalization test = bsxfun(@minus, test, mu); % reduction Uk = U(:, 1:k); Z = test * Uk; fprintf('reduce done.\n'); %% reconstruction %% for the test set images, we only minus the mean face, % so in the reconstruct process, we need add the mean face back Xp = Z * Uk'; % show reconstructed face for i = 1:5 face = Xp(i, :) + mu; face = reshape((face), 32, 32); imwrite(uint8(face), strcat('./reconstruct/', int2str(4000 + i), '.bmp')); end %% for the train set reconstruction, we minus the mean face and divide by standard deviation during the train % so in the reconstruction process, we need to multiby standard deviation first, % and then add the mean face back trainset_re = trainset_norm * Uk; % reduction trainset_re = trainset_re * Uk'; % reconstruction for i = 1:5 train = trainset_re(i, :); train = train .* sigma; train = train + mu; train = reshape(train, 32, 32); imwrite(uint8(train), strcat('./reconstruct/', int2str(i), 'train.bmp')); end fprintf('job done.\n');