首页 > 代码库 > hdu[1711]number sequence

hdu[1711]number sequence

Problem Description

Given two sequences of numbers : a[1], a[2], ...... , a[N], and b[1], b[2], ...... , b[M] (1 <= M <= 10000, 1 <= N <= 1000000). Your task is to find a number K which make a[K] = b[1], a[K + 1] = b[2], ...... , a[K + M - 1] = b[M]. If there are more than one K exist, output the smallest one.
 

 

Input

The first line of input is a number T which indicate the number of cases. Each case contains three lines. The first line is two numbers N and M (1 <= M <= 10000, 1 <= N <= 1000000). The second line contains N integers which indicate a[1], a[2], ...... , a[N]. The third line contains M integers which indicate b[1], b[2], ...... , b[M]. All integers are in the range of [-1000000, 1000000].
 

 

Output

For each test case, you should output one line which only contain K described above. If no such K exists, output -1 instead.
 

 

Sample Input

213 51 2 1 2 3 1 2 3 1 3 2 1 21 2 3 1 313 51 2 1 2 3 1 2 3 1 3 2 1 21 2 3 2 1

Sample Output

6-1

Solution

kmp模版题目

#include<cstdio>#include<cstring>#include<cstdlib>using namespace std;inline int read(){    int x=0,c=getchar(),f=1;    for(;c<48||c>57;c=getchar())        if(!(c^45))            f=-1;    for(;c>47&&c<58;c=getchar())        x=(x<<1)+(x<<3)+c-48;    return x*f;}int sub_l,tar_l,sub[10001],tar[1000001],p[10001];inline void pre(){    for(int i=2,j=0;i<=sub_l;i++){        while(j&&sub[j+1]^sub[i])            j=p[j];        if(!(sub[j+1]^sub[i]))            j++;        p[i]=j;    }}inline void kmp(){    int ans=-1;    for(int i=1,j=0;i<=tar_l;i++){        while(j&&sub[j+1]^tar[i])            j=p[j];        if(!(sub[j+1]^tar[i]))            j++;        if(!(j^sub_l)){            ans=i-sub_l+1;            break;        }    }    printf("%d\n",ans);}int main(){    int T=read();    while(T--){        tar_l=read(),sub_l=read();        memset(p,0,sizeof(p));        for(int i=1;i<=tar_l;i++)            tar[i]=read();        for(int j=1;j<=sub_l;j++)            sub[j]=read();        pre(); kmp();    }    return 0;}

 

hdu[1711]number sequence