首页 > 代码库 > POJ1269_Intersecting Lines(几何/叉积判断直线位置关系)
POJ1269_Intersecting Lines(几何/叉积判断直线位置关系)
解题报告
题目传送门
题意:
判断直线的位置关系(平行,重合,相交)
思路:
两直线可以用叉积来判断位置关系。
AB直线和CD直线
平行的话端点C和端点D会在直线AB的同一侧。
重合的话在直线AB上。
剩下就是相交。
求两直线交点可以用面积比和边长比来求。
看下面的图就知道了,推导就比较容易了
#include <iostream> #include <cstring> #include <cstdio> #define eps 1e-6 #define zero(x) (((x)>0?(x):-(x))>eps) using namespace std; struct Point { double x,y; }; struct L { Point l,r; }; double xmulti(Point a,Point b,Point p) { return (b.x-a.x)*(p.y-a.y)-(p.x-a.x)*(b.y-a.y); } int main() { int n,i,j; scanf("%d",&n); cout<<"INTERSECTING LINES OUTPUT"<<endl; L l1,l2; Point p; for(i=0; i<n; i++) { scanf("%lf%lf%lf%lf%lf%lf%lf%lf",&l1.l.x,&l1.l.y,&l1.r.x,&l1.r.y,&l2.l.x,&l2.l.y,&l2.r.x,&l2.r.y); double a,b,c,d; a=xmulti(l1.l,l1.r,l2.l);//c b=xmulti(l1.l,l1.r,l2.r);//d c=xmulti(l2.l,l2.r,l1.l); d=xmulti(l2.l,l2.r,l1.r); if(a==0&&b==0) cout<<"LINE"<<endl; else if(a*b>0&&c*d>0) { cout<<"NONE"<<endl; } else { p.x=(b*l2.l.x-a*l2.r.x)/(b-a); p.y=(b*l2.l.y-a*l2.r.y)/(b-a); printf("POINT %.2lf %.2lf\n",p.x,p.y); } } cout<<"END OF OUTPUT"<<endl; }
Intersecting Lines
Time Limit: 1000MS | Memory Limit: 10000K | |
Total Submissions: 10764 | Accepted: 4803 |
Description
We all know that a pair of distinct points on a plane defines a line and that a pair of lines on a plane will intersect in one of three ways: 1) no intersection because they are parallel, 2) intersect in a line because they are on top of one another (i.e. they are the same line), 3) intersect in a point. In this problem you will use your algebraic knowledge to create a program that determines how and where two lines intersect.
Your program will repeatedly read in four points that define two lines in the x-y plane and determine how and where the lines intersect. All numbers required by this problem will be reasonable, say between -1000 and 1000.
Your program will repeatedly read in four points that define two lines in the x-y plane and determine how and where the lines intersect. All numbers required by this problem will be reasonable, say between -1000 and 1000.
Input
The first line contains an integer N between 1 and 10 describing how many pairs of lines are represented. The next N lines will each contain eight integers. These integers represent the coordinates of four points on the plane in the order x1y1x2y2x3y3x4y4. Thus each of these input lines represents two lines on the plane: the line through (x1,y1) and (x2,y2) and the line through (x3,y3) and (x4,y4). The point (x1,y1) is always distinct from (x2,y2). Likewise with (x3,y3) and (x4,y4).
Output
There should be N+2 lines of output. The first line of output should read INTERSECTING LINES OUTPUT. There will then be one line of output for each pair of planar lines represented by a line of input, describing how the lines intersect: none, line, or point. If the intersection is a point then your program should output the x and y coordinates of the point, correct to two decimal places. The final line of output should read "END OF OUTPUT".
Sample Input
5 0 0 4 4 0 4 4 0 5 0 7 6 1 0 2 3 5 0 7 6 3 -6 4 -3 2 0 2 27 1 5 18 5 0 3 4 0 1 2 2 5
Sample Output
INTERSECTING LINES OUTPUT POINT 2.00 2.00 NONE LINE POINT 2.00 5.00 POINT 1.07 2.20 END OF OUTPUT
Source
Mid-Atlantic 1996
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。