首页 > 代码库 > 邂逅python
邂逅python
你很美 幸运遇见你
很幸运,能在现在这么多繁杂的语言中选择python。初识python是在2016年的七月。大二学期刚刚结束,留在学校准备学点东西。刚好听同学说下学期要学习python,所以决定要学这个了。刚一开始学发现python的入门确实很简单,特别是对于我们之前有编程基础的来说。后来发现浅尝辄止的学习并不能满足我的初衷,在openstack平台上的二次开发。开学以后,把更多的精力都放在openstack的安装部署,python又得重新开始学。在学习的过程中也越发坚决的走上了python的学习和开发的道路。
python是什么?
在两次看老男孩的python培训视频的时候,都没有很重视有关语言的介绍或者是语言差异这方面的内容。但是觉得有关于这方面有可能会是面试官的问题,也经常记得老师说过,不光要知其然也应该知其所以然。所以还是决定把这部分再学一遍。以下内容多有选取至金角大王的博客。
编程语言主要从以下几个角度为进行分类,编译型和解释型、静态语言和动态语言、强类型定义语言和弱类型定义语言
编译型和解释型
我们先看看编译型,其实它和汇编语言是一样的:也是有一个负责翻译的程序来对我们的源代码进行转换,生成相对应的可执行代码。这个过程说得专业一点,就称为编译(Compile),而负责编译的程序自然就称为编译器(Compiler)。如果我们写的程序代码都包含在一个源文件中,那么通常编译之后就会直接生成一个可执行文件,我们就可以直接运行了。但对于一个比较复杂的项目,为了方便管理,我们通常把代码分散在各个源文件中,作为不同的模块来组织。这时编译各个文件时就会生成目标文件(Object file)而不是前面说的可执行文件。一般一个源文件的编译都会对应一个目标文件。这些目标文件里的内容基本上已经是可执行代码了,但由于只是整个项目的一部分,所以我们还不能直接运行。待所有的源文件的编译都大功告成,我们就可以最后把这些半成品的目标文件“打包”成一个可执行文件了,这个工作由另一个程序负责完成,由于此过程好像是把包含可执行代码的目标文件连接装配起来,所以又称为链接(Link),而负责链接的程序就叫……就叫链接程序(Linker)。链接程序除了链接目标文件外,可能还有各种资源,像图标文件啊、声音文件啊什么的,还要负责去除目标文件之间的冗余重复代码,等等,所以……也是挺累的。链接完成之后,一般就可以得到我们想要的可执行文件了。
上面我们大概地介绍了编译型语言的特点,现在再看看解释型。噢,从字面上看,“编译”和“解释”的确都有“翻译”的意思,它们的区别则在于翻译的时机安排不大一样。打个比方:假如你打算阅读一本外文书,而你不知道这门外语,那么你可以找一名翻译,给他足够的时间让他从头到尾把整本书翻译好,然后把书的母语版交给你阅读;或者,你也立刻让这名翻译辅助你阅读,让他一句一句给你翻译,如果你想往回看某个章节,他也得重新给你翻译。
两种方式,前者就相当于我们刚才所说的编译型:一次把所有的代码转换成机器语言,然后写成可执行文件;而后者就相当于我们要说的解释型:在程序运行的前一刻,还只有源程序而没有可执行程序;而程序每执行到源程序的某一条指令,则会有一个称之为解释程序的外壳程序将源代码转换成二进制代码以供执行,总言之,就是不断地解释、执行、解释、执行……所以,解释型程序是离不开解释程序的。像早期的BASIC就是一门经典的解释型语言,要执行BASIC程序,就得进入BASIC环境,然后才能加载程序源文件、运行。解释型程序中,由于程序总是以源代码的形式出现,因此只要有相应的解释器,移植几乎不成问题。编译型程序虽然源代码也可以移植,但前提是必须针对不同的系统分别进行编译,对于复杂的工程来说,的确是一件不小的时间消耗,况且很可能一些细节的地方还是要修改源代码。而且,解释型程序省却了编译的步骤,修改调试也非常方便,编辑完毕之后即可立即运行,不必像编译型程序一样每次进行小小改动都要耐心等待漫长的Compiling…Linking…这样的编译链接过程。不过凡事有利有弊,由于解释型程序是将编译的过程放到执行过程中,这就决定了解释型程序注定要比编译型慢上一大截,像几百倍的速度差距也是不足为奇的。
编译型与解释型,两者各有利弊。前者由于程序执行速度快,同等条件下对系统要求较低,因此像开发操作系统、大型应用程序、数据库系统等时都采用它,像C/C++、Pascal/Object Pascal(Delphi)、VB等基本都可视为编译语言,而一些网页脚本、服务器脚本及辅助开发接口这样的对速度要求不高、对不同系统平台间的兼容性有一定要求的程序则通常使用解释性语言,如Java、JavaScript、VBScript、Perl、Python等等。
动态语言和静态语言
通常我们所说的动态语言、静态语言是指动态类型语言和静态类型语言。
(1)动态类型语言:动态类型语言是指在运行期间才去做数据类型检查的语言,也就是说,在用动态类型的语言编程时,永远也不用给任何变量指定数据类型,该语言会在你第一次赋值给变量时,在内部将数据类型记录下来。Python和Ruby就是一种典型的动态类型语言,其他的各种脚本语言如VBScript也多少属于动态类型语言。
(2)静态类型语言:静态类型语言与动态类型语言刚好相反,它的数据类型是在编译其间检查的,也就是说在写程序时要声明所有变量的数据类型,C/C++是静态类型语言的典型代表,其他的静态类型语言还有C#、JAVA等。
对于动态语言与静态语言的区分,套用一句流行的话就是:Static typing when possible, dynamic typing when needed。
强类型定义语言和弱类型定义语言
(1)强类型定义语言:强制数据类型定义的语言。也就是说,一旦一个变量被指定了某个数据类型,如果不经过强制转换,那么它就永远是这个数据类型了。举个例子:如果你定义了一个整型变量a,那么程序根本不可能将a当作字符串类型处理。强类型定义语言是类型安全的语言。
(2)弱类型定义语言:数据类型可以被忽略的语言。它与强类型定义语言相反, 一个变量可以赋不同数据类型的值。
强类型定义语言在速度上可能略逊色于弱类型定义语言,但是强类型定义语言带来的严谨性能够有效的避免许多错误。另外,“这门语言是不是动态语言”与“这门语言是否类型安全”之间是完全没有联系的!
例如:Python是动态语言,是强类型定义语言(类型安全的语言); VBScript是动态语言,是弱类型定义语言(类型不安全的语言); JAVA是静态语言,是强类型定义语言(类型安全的语言)。
python就一定是完美的吗?
世上没有完美的人,同时也没有完美的语言。当然对于声称php是最好语音的人,持批判态度就好了。
先看优点:
- Python的定位是“优雅”、“明确”、“简单”,所以Python程序看上去总是简单易懂,初学者学Python,不但入门容易,而且将来深入下去,可以编写那些非常非常复杂的程序。
- 开发效率非常高,Python有非常强大的第三方库,基本上你想通过计算机实现任何功能,Python官方库里都有相应的模块进行支持,直接下载调用后,在基础库的基础上再进行开发,大大降低开发周期,避免重复造轮子。
- 高级语言————当你用Python语言编写程序的时候,你无需考虑诸如如何管理你的程序使用的内存一类的底层细节
- 可移植性————由于它的开源本质,Python已经被移植在许多平台上(经过改动使它能够工 作在不同平台上)。如果你小心地避免使用依赖于系统的特性,那么你的所有Python程序无需修改就几乎可以在市场上所有的系统平台上运行
- 可扩展性————如果你需要你的一段关键代码运行得更快或者希望某些算法不公开,你可以把你的部分程序用C或C++编写,然后在你的Python程序中使用它们。
- 可嵌入性————你可以把Python嵌入你的C/C++程序,从而向你的程序用户提供脚本功能。
再看缺点:
- 速度慢,Python 的运行速度相比C语言确实慢很多,跟JAVA相比也要慢一些,因此这也是很多所谓的大牛不屑于使用Python的主要原因,但其实这里所指的运行速度慢在大多数情况下用户是无法直接感知到的,必须借助测试工具才能体现出来,比如你用C运一个程序花了0.01s,用Python是0.1s,这样C语言直接比Python快了10倍,算是非常夸张了,但是你是无法直接通过肉眼感知的,因为一个正常人所能感知的时间最小单位是0.15-0.4s左右,哈哈。其实在大多数情况下Python已经完全可以满足你对程序速度的要求,除非你要写对速度要求极高的搜索引擎等,这种情况下,当然还是建议你用C去实现的。
- 代码不能加密,因为PYTHON是解释性语言,它的源码都是以名文形式存放的,不过我不认为这算是一个缺点,如果你的项目要求源代码必须是加密的,那你一开始就不应该用Python来去实现。
- 线程不能利用多CPU问题,这是Python被人诟病最多的一个缺点,GIL即全局解释器锁(Global Interpreter Lock),是计算机程序设计语言解释器用于同步线程的工具,使得任何时刻仅有一个线程在执行,Python的线程是操作系统的原生线程。在Linux上为pthread,在Windows上为Win thread,完全由操作系统调度线程的执行。一个python解释器进程内有一条主线程,以及多条用户程序的执行线程。即使在多核CPU平台上,由于GIL的存在,所以禁止多线程的并行执行。关于这个问题的折衷解决方法,我们在以后线程和进程章节里再进行详细探讨。
python当然还是会有一些缺点,但是瑕不掩瑜,这不是阻止我们使用python的理由。人生苦短,我用python!
邂逅python