首页 > 代码库 > 基于SVM的数据分类预测——意大利葡萄酒种类识别
基于SVM的数据分类预测——意大利葡萄酒种类识别
wine数据来自于UCI数据库,记录的是意大利同一地区3中不同品种的葡萄酒13中化学成分含量,以期通过科学的方法,达到自动分类葡萄酒的目的。
本次分类的数据共有178个样本,每个样本有13个属性,并提供每个样本的正确分类,用于检验SVM分类的准确定。
首先我们画出数据的可视化图:
% 载入测试数据wine,其中包含的数据为classnumber = 3,wine:178*13的矩阵,wine_labes:178*1的列向量 load chapter_WineClass.mat; % 画出测试数据的box可视化图 figure; boxplot(wine,'orientation','horizontal','labels',categories); title('wine数据的box可视化图','FontSize',12); xlabel('属性值','FontSize',12); grid on; % 画出测试数据的分维可视化图 figure subplot(3,5,1); hold on for run = 1:178 plot(run,wine_labels(run),'*'); end xlabel('样本','FontSize',10); ylabel('类别标签','FontSize',10); title('class','FontSize',10); for run = 2:14 subplot(3,5,run); hold on; str = ['attrib ',num2str(run-1)]; for i = 1:178 plot(i,wine(i,run-1),'*'); end xlabel('样本','FontSize',10); ylabel('属性值','FontSize',10); title(str,'FontSize',10); end
(图1)
(图2)
图1是wine数据的box可视化图,图2是wine的箱式图,从图上我们很难分出每一种葡萄酒是哪种类型。下面我们尝试用SVM来分类。
数据的预处理
% 选定训练集和测试集 % 将第一类的1-30,第二类的60-95,第三类的131-153做为训练集 train_wine = [wine(1:30,:);wine(60:95,:);wine(131:153,:)]; % 相应的训练集的标签也要分离出来 train_wine_labels = [wine_labels(1:30);wine_labels(60:95);wine_labels(131:153)]; % 将第一类的31-59,第二类的96-130,第三类的154-178做为测试集 test_wine = [wine(31:59,:);wine(96:130,:);wine(154:178,:)]; % 相应的测试集的标签也要分离出来 test_wine_labels = [wine_labels(31:59);wine_labels(96:130);wine_labels(154:178)]; <strong>%% 数据预处理</strong> % 数据预处理,将训练集和测试集归一化到[0,1]区间 [mtrain,ntrain] = size(train_wine); [mtest,ntest] = size(test_wine); dataset = [train_wine;test_wine]; % mapminmax为MATLAB自带的归一化函数 [dataset_scale,ps] = mapminmax(dataset',0,1); dataset_scale = dataset_scale'; train_wine = dataset_scale(1:mtrain,:); test_wine = dataset_scale( (mtrain+1):(mtrain+mtest),: );
<span style="font-size:12px;">%% SVM网络训练 model = svmtrain(train_wine_labels, train_wine, '-c 2 -g 1'); %% SVM网络预测 [predict_label, accuracy,dec_value1] = svmpredict(test_wine_labels, test_wine, model);</span>
%% 结果分析 % 测试集的实际分类和预测分类图 % 通过图可以看出只有一个测试样本是被错分的 figure; hold on; plot(test_wine_labels,'o'); plot(predict_label,'r*'); xlabel('测试集样本','FontSize',12); ylabel('类别标签','FontSize',12); legend('实际测试集分类','预测测试集分类'); title('测试集的实际分类和预测分类图','FontSize',12); grid on;
利用svm分类的准确率达到了98.8764%,在89个测试样本中仅有一个被分类错误。可见SVM在数据分类方面的强大!
END
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。