首页 > 代码库 > Flume1.5.0的安装、部署、简单应用(含分布式、与hadoop2.2.0、hbase0.96的案例)
Flume1.5.0的安装、部署、简单应用(含分布式、与hadoop2.2.0、hbase0.96的案例)
目录:
一、什么是Flume?
1)flume的特点
2)flume的可靠性
3)flume的可恢复性
4)flume 的 一些核心概念
二、flume的官方网站在哪里?
三、在哪里下载?
四、如何安装?
五、flume的案例
1)案例1:Avro
2)案例2:Spool
3)案例3:Exec
4)案例4:Syslogtcp
5)案例5:JSONHandler
6)案例6:Hadoop sink
7)案例7:File Roll Sink
8)案例8:Replicating Channel Selector
9)案例9:Multiplexing Channel Selector
10)案例10:Flume Sink Processors
11)案例11:Load balancing Sink Processor
12)案例12:Hbase sink
一、什么是Flume?
flume 作为 cloudera 开发的实时日志收集系统,受到了业界的认可与广泛应用。Flume 初始的发行版本目前被统称为 Flume OG(original generation),属于 cloudera。但随着 FLume 功能的扩展,Flume OG 代码工程臃肿、核心组件设计不合理、核心配置不标准等缺点暴露出来,尤其是在 Flume OG 的最后一个发行版本 0.94.0 中,日志传输不稳定的现象尤为严重,为了解决这些问题,2011 年 10 月 22 号,cloudera 完成了 Flume-728,对 Flume 进行了里程碑式的改动:重构核心组件、核心配置以及代码架构,重构后的版本统称为 Flume NG(next generation);改动的另一原因是将 Flume 纳入 apache 旗下,cloudera Flume 改名为 Apache Flume。
flume的特点:
flume是一个分布式、可靠、和高可用的海量日志采集、聚合和传输的系统。支持在日志系统中定制各类数据发送方,用于收集数据;同时,Flume提供对数据进行简单处理,并写到各种数据接受方(比如文本、HDFS、Hbase等)的能力 。
flume的数据流由事件(Event)贯穿始终。事件是Flume的基本数据单位,它携带日志数据(字节数组形式)并且携带有头信息,这些Event由Agent外部的Source生成,当Source捕获事件后会进行特定的格式化,然后Source会把事件推入(单个或多个)Channel中。你可以把Channel看作是一个缓冲区,它将保存事件直到Sink处理完该事件。Sink负责持久化日志或者把事件推向另一个Source。
flume的可靠性
当节点出现故障时,日志能够被传送到其他节点上而不会丢失。Flume提供了三种级别的可靠性保障,从强到弱依次分别为:end-to-end(收到数据agent首先将event写到磁盘上,当数据传送成功后,再删除;如果数据发送失败,可以重新发送。),Store on failure(这也是scribe采用的策略,当数据接收方crash时,将数据写到本地,待恢复后,继续发送),Besteffort(数据发送到接收方后,不会进行确认)。
flume的可恢复性:
还是靠Channel。推荐使用FileChannel,事件持久化在本地文件系统里(性能较差)。
flume的一些核心概念:
- Agent使用JVM 运行Flume。每台机器运行一个agent,但是可以在一个agent中包含多个sources和sinks。
- Client生产数据,运行在一个独立的线程。
- Source从Client收集数据,传递给Channel。
- Sink从Channel收集数据,运行在一个独立线程。
- Channel连接 sources 和 sinks ,这个有点像一个队列。
- Events可以是日志记录、 avro 对象等。
Flume以agent为最小的独立运行单位。一个agent就是一个JVM。单agent由Source、Sink和Channel三大组件构成,如下图:
值得注意的是,Flume提供了大量内置的Source、Channel和Sink类型。不同类型的Source,Channel和Sink可以自由组合。组合方式基于用户设置的配置文件,非常灵活。比如:Channel可以把事件暂存在内存里,也可以持久化到本地硬盘上。Sink可以把日志写入HDFS, HBase,甚至是另外一个Source等等。Flume支持用户建立多级流,也就是说,多个agent可以协同工作,并且支持Fan-in、Fan-out、Contextual Routing、Backup Routes,这也正是NB之处。如下图所示:
二、flume的官方网站在哪里?
http://flume.apache.org/
三、在哪里下载?
http://www.apache.org/dyn/closer.cgi/flume/1.5.0/apache-flume-1.5.0-bin.tar.gz
四、如何安装?
1)将下载的flume包,解压到/home/hadoop目录中,你就已经完成了50%:)简单吧
2)修改 flume-env.sh 配置文件,主要是JAVA_HOME变量设置
?
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 | root@m1: /home/hadoop/flume-1 .5.0-bin # cp conf/flume-env.sh.template conf/flume-env.sh root@m1: /home/hadoop/flume-1 .5.0-bin # vi conf/flume-env.sh # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # If this file is placed at FLUME_CONF_DIR/flume-env.sh, it will be sourced # during Flume startup. # Enviroment variables can be set here. JAVA_HOME= /usr/lib/jvm/java-7-oracle # Give Flume more memory and pre-allocate, enable remote monitoring via JMX #JAVA_OPTS="-Xms100m -Xmx200m -Dcom.sun.management.jmxremote" # Note that the Flume conf directory is always included in the classpath. #FLUME_CLASSPATH="" |
3)验证是否安装成功
?
1 2 3 4 5 6 7 | root@m1: /home/hadoop # /home/hadoop/flume-1.5.0-bin/bin/flume-ng version Flume 1.5.0 Source code repository: https: //git-wip-us .apache.org /repos/asf/flume .git Revision: 8633220df808c4cd0c13d1cf0320454a94f1ea97 Compiled by hshreedharan on Wed May 7 14:49:18 PDT 2014 From source with checksum a01fe726e4380ba0c9f7a7d222db961f root@m1: /home/hadoop # |
五、flume的案例
1)案例1:Avro
Avro可以发送一个给定的文件给Flume,Avro 源使用AVRO RPC机制。
a)创建agent配置文件
?
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | root@m1: /home/hadoop #vi /home/hadoop/flume-1.5.0-bin/conf/avro.conf a1.sources = r1 a1.sinks = k1 a1.channels = c1 # Describe/configure the source a1.sources.r1. type = avro a1.sources.r1.channels = c1 a1.sources.r1.bind = 0.0.0.0 a1.sources.r1.port = 4141 # Describe the sink a1.sinks.k1. type = logger # Use a channel which buffers events in memory a1.channels.c1. type = memory a1.channels.c1.capacity = 1000 a1.channels.c1.transactionCapacity = 100 # Bind the source and sink to the channel a1.sources.r1.channels = c1 a1.sinks.k1.channel = c1 |
b)启动flume agent a1
?
1 | root@m1: /home/hadoop # /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/avro.conf -n a1 -Dflume.root.logger=INFO,console |
c)创建指定文件
?
1 | root@m1: /home/hadoop # echo "hello world" > /home/hadoop/flume-1.5.0-bin/log.00 |
d)使用avro-client发送文件
?
1 | root@m1: /home/hadoop # /home/hadoop/flume-1.5.0-bin/bin/flume-ng avro-client -c . -H m1 -p 4141 -F /home/hadoop/flume-1.5.0-bin/log.00 |
f)在m1的控制台,可以看到以下信息,注意最后一行:
?
1 2 3 4 5 6 7 8 9 10 | root@m1: /home/hadoop/flume-1 .5.0-bin /conf # /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/avro.conf -n a1 -Dflume.root.logger=INFO,console Info: Sourcing environment configuration script /home/hadoop/flume-1 .5.0-bin /conf/flume-env .sh Info: Including Hadoop libraries found via ( /home/hadoop/hadoop-2 .2.0 /bin/hadoop ) for HDFS access Info: Excluding /home/hadoop/hadoop-2 .2.0 /share/hadoop/common/lib/slf4j-api-1 .7.5.jar from classpath Info: Excluding /home/hadoop/hadoop-2 .2.0 /share/hadoop/common/lib/slf4j-log4j12-1 .7.5.jar from classpath ... 2014-08-10 10:43:25,112 (New I /O worker #1) [INFO - org.apache.avro.ipc.NettyServer$NettyServerAvroHandler.handleUpstream(NettyServer.java:171)] [id: 0x92464c4f, /192.168.1.50:59850 :> /192.168.1.50:4141] UNBOUND 2014-08-10 10:43:25,112 (New I /O worker #1) [INFO - org.apache.avro.ipc.NettyServer$NettyServerAvroHandler.handleUpstream(NettyServer.java:171)] [id: 0x92464c4f, /192.168.1.50:59850 :> /192.168.1.50:4141] CLOSED 2014-08-10 10:43:25,112 (New I /O worker #1) [INFO - org.apache.avro.ipc.NettyServer$NettyServerAvroHandler.channelClosed(NettyServer.java:209)] Connection to /192.168.1.50:59850 disconnected. 2014-08-10 10:43:26,718 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:70)] Event: { headers:{} body: 68 65 6C 6C 6F 20 77 6F 72 6C 64 hello world } |
2)案例2:Spool
Spool监测配置的目录下新增的文件,并将文件中的数据读取出来。需要注意两点:
1) 拷贝到spool目录下的文件不可以再打开编辑。
2) spool目录下不可包含相应的子目录
a)创建agent配置文件
?
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | root@m1: /home/hadoop # vi /home/hadoop/flume-1.5.0-bin/conf/spool.conf a1.sources = r1 a1.sinks = k1 a1.channels = c1 # Describe/configure the source a1.sources.r1. type = spooldir a1.sources.r1.channels = c1 a1.sources.r1.spoolDir = /home/hadoop/flume-1 .5.0-bin /logs a1.sources.r1.fileHeader = true # Describe the sink a1.sinks.k1. type = logger # Use a channel which buffers events in memory a1.channels.c1. type = memory a1.channels.c1.capacity = 1000 a1.channels.c1.transactionCapacity = 100 # Bind the source and sink to the channel a1.sources.r1.channels = c1 a1.sinks.k1.channel = c1 |
b)启动flume agent a1
?
1 | root@m1: /home/hadoop # /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/spool.conf -n a1 -Dflume.root.logger=INFO,console |
c)追加文件到/home/hadoop/flume-1.5.0-bin/logs目录
?
1 | root@m1: /home/hadoop # echo "spool test1" > /home/hadoop/flume-1.5.0-bin/logs/spool_text.log |
d)在m1的控制台,可以看到以下相关信息:
?
1 2 3 4 5 6 7 8 9 10 11 | 14 /08/10 11:37:13 INFO source .SpoolDirectorySource: Spooling Directory Source runner has shutdown . 14 /08/10 11:37:13 INFO source .SpoolDirectorySource: Spooling Directory Source runner has shutdown . 14 /08/10 11:37:14 INFO avro.ReliableSpoolingFileEventReader: Preparing to move file /home/hadoop/flume-1 .5.0-bin /logs/spool_text .log to /home/hadoop/flume-1 .5.0-bin /logs/spool_text .log.COMPLETED 14 /08/10 11:37:14 INFO source .SpoolDirectorySource: Spooling Directory Source runner has shutdown . 14 /08/10 11:37:14 INFO source .SpoolDirectorySource: Spooling Directory Source runner has shutdown . 14 /08/10 11:37:14 INFO sink.LoggerSink: Event: { headers:{ file = /home/hadoop/flume-1 .5.0-bin /logs/spool_text .log} body: 73 70 6F 6F 6C 20 74 65 73 74 31 spool test1 } 14 /08/10 11:37:15 INFO source .SpoolDirectorySource: Spooling Directory Source runner has shutdown . 14 /08/10 11:37:15 INFO source .SpoolDirectorySource: Spooling Directory Source runner has shutdown . 14 /08/10 11:37:16 INFO source .SpoolDirectorySource: Spooling Directory Source runner has shutdown . 14 /08/10 11:37:16 INFO source .SpoolDirectorySource: Spooling Directory Source runner has shutdown . 14 /08/10 11:37:17 INFO source .SpoolDirectorySource: Spooling Directory Source runner has shutdown . |
3)案例3:Exec
EXEC执行一个给定的命令获得输出的源,如果要使用tail命令,必选使得file足够大才能看到输出内容
a)创建agent配置文件
?
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | root@m1: /home/hadoop # vi /home/hadoop/flume-1.5.0-bin/conf/exec_tail.conf a1.sources = r1 a1.sinks = k1 a1.channels = c1 # Describe/configure the source a1.sources.r1. type = exec a1.sources.r1.channels = c1 a1.sources.r1. command = tail -F /home/hadoop/flume-1 .5.0-bin /log_exec_tail # Describe the sink a1.sinks.k1. type = logger # Use a channel which buffers events in memory a1.channels.c1. type = memory a1.channels.c1.capacity = 1000 a1.channels.c1.transactionCapacity = 100 # Bind the source and sink to the channel a1.sources.r1.channels = c1 a1.sinks.k1.channel = c1 |
b)启动flume agent a1
?
1 | root@m1: /home/hadoop # /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/exec_tail.conf -n a1 -Dflume.root.logger=INFO,console |
c)生成足够多的内容在文件里
?
1 | root@m1: /home/hadoop # for i in {1..100};do echo "exec tail$i" >> /home/hadoop/flume-1.5.0-bin/log_exec_tail;echo $i;sleep 0.1;done |
e)在m1的控制台,可以看到以下信息:
?
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | 2014-08-10 10:59:25,513 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:70)] Event: { headers:{} body: 65 78 65 63 20 74 61 69 6C 20 74 65 73 74 exec tail test } 2014-08-10 10:59:34,535 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:70)] Event: { headers:{} body: 65 78 65 63 20 74 61 69 6C 20 74 65 73 74 exec tail test } 2014-08-10 11:01:40,557 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:70)] Event: { headers:{} body: 65 78 65 63 20 74 61 69 6C 31 exec tail1 } 2014-08-10 11:01:41,180 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:70)] Event: { headers:{} body: 65 78 65 63 20 74 61 69 6C 32 exec tail2 } 2014-08-10 11:01:41,180 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:70)] Event: { headers:{} body: 65 78 65 63 20 74 61 69 6C 33 exec tail3 } 2014-08-10 11:01:41,181 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:70)] Event: { headers:{} body: 65 78 65 63 20 74 61 69 6C 34 exec tail4 } 2014-08-10 11:01:41,181 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:70)] Event: { headers:{} body: 65 78 65 63 20 74 61 69 6C 35 exec tail5 } 2014-08-10 11:01:41,181 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:70)] Event: { headers:{} body: 65 78 65 63 20 74 61 69 6C 36 exec tail6 } .... .... .... 2014-08-10 11:01:51,550 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:70)] Event: { headers:{} body: 65 78 65 63 20 74 61 69 6C 39 36 exec tail96 } 2014-08-10 11:01:51,550 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:70)] Event: { headers:{} body: 65 78 65 63 20 74 61 69 6C 39 37 exec tail97 } 2014-08-10 11:01:51,551 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:70)] Event: { headers:{} body: 65 78 65 63 20 74 61 69 6C 39 38 exec tail98 } 2014-08-10 11:01:51,551 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:70)] Event: { headers:{} body: 65 78 65 63 20 74 61 69 6C 39 39 exec tail99 } 2014-08-10 11:01:51,551 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:70)] Event: { headers:{} body: 65 78 65 63 20 74 61 69 6C 31 30 30 exec tail100 } |
4)案例4:Syslogtcp
Syslogtcp监听TCP的端口做为数据源
a)创建agent配置文件
?
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | root@m1: /home/hadoop # vi /home/hadoop/flume-1.5.0-bin/conf/syslog_tcp.conf a1.sources = r1 a1.sinks = k1 a1.channels = c1 # Describe/configure the source a1.sources.r1. type = syslogtcp a1.sources.r1.port = 5140 a1.sources.r1.host = localhost a1.sources.r1.channels = c1 # Describe the sink a1.sinks.k1. type = logger # Use a channel which buffers events in memory a1.channels.c1. type = memory a1.channels.c1.capacity = 1000 a1.channels.c1.transactionCapacity = 100 # Bind the source and sink to the channel a1.sources.r1.channels = c1 a1.sinks.k1.channel = c1 |
b)启动flume agent a1
?
1 | root@m1: /home/hadoop # /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/syslog_tcp.conf -n a1 -Dflume.root.logger=INFO,console |
c)测试产生syslog
?
1 | root@m1: /home/hadoop # echo "hello idoall.org syslog" | nc localhost 5140 |
d)在m1的控制台,可以看到以下信息:
?
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 | 14 /08/10 11:41:45 INFO node.PollingPropertiesFileConfigurationProvider: Reloading configuration file : /home/hadoop/flume-1 .5.0-bin /conf/syslog_tcp .conf 14 /08/10 11:41:45 INFO conf.FlumeConfiguration: Added sinks: k1 Agent: a1 14 /08/10 11:41:45 INFO conf.FlumeConfiguration: Processing:k1 14 /08/10 11:41:45 INFO conf.FlumeConfiguration: Processing:k1 14 /08/10 11:41:45 INFO conf.FlumeConfiguration: Post-validation flume configuration contains configuration for agents: [a1] 14 /08/10 11:41:45 INFO node.AbstractConfigurationProvider: Creating channels 14 /08/10 11:41:45 INFO channel.DefaultChannelFactory: Creating instance of channel c1 type memory 14 /08/10 11:41:45 INFO node.AbstractConfigurationProvider: Created channel c1 14 /08/10 11:41:45 INFO source .DefaultSourceFactory: Creating instance of source r1, type syslogtcp 14 /08/10 11:41:45 INFO sink.DefaultSinkFactory: Creating instance of sink: k1, type : logger 14 /08/10 11:41:45 INFO node.AbstractConfigurationProvider: Channel c1 connected to [r1, k1] 14 /08/10 11:41:45 INFO node.Application: Starting new configuration:{ sourceRunners:{r1=EventDrivenSourceRunner: { source :org.apache.flume. source .SyslogTcpSource{name:r1,state:IDLE} }} sinkRunners:{k1=SinkRunner: { policy:org.apache.flume.sink.DefaultSinkProcessor@6538b14 counterGroup:{ name:null counters:{} } }} channels:{c1=org.apache.flume.channel.MemoryChannel{name: c1}} } 14 /08/10 11:41:45 INFO node.Application: Starting Channel c1 14 /08/10 11:41:45 INFO instrumentation.MonitoredCounterGroup: Monitored counter group for type : CHANNEL, name: c1: Successfully registered new MBean. 14 /08/10 11:41:45 INFO instrumentation.MonitoredCounterGroup: Component type : CHANNEL, name: c1 started 14 /08/10 11:41:45 INFO node.Application: Starting Sink k1 14 /08/10 11:41:45 INFO node.Application: Starting Source r1 14 /08/10 11:41:45 INFO source .SyslogTcpSource: Syslog TCP Source starting... 14 /08/10 11:42:15 WARN source .SyslogUtils: Event created from Invalid Syslog data. 14 /08/10 11:42:15 INFO sink.LoggerSink: Event: { headers:{Severity=0, flume.syslog.status=Invalid, Facility=0} body: 68 65 6C 6C 6F 20 69 64 6F 61 6C 6C 2E 6F 72 67 hello idoall.org } |
5)案例5:JSONHandler
a)创建agent配置文件
?
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | root@m1: /home/hadoop # vi /home/hadoop/flume-1.5.0-bin/conf/post_json.conf a1.sources = r1 a1.sinks = k1 a1.channels = c1 # Describe/configure the source a1.sources.r1. type = org.apache.flume. source .http.HTTPSource a1.sources.r1.port = 8888 a1.sources.r1.channels = c1 # Describe the sink a1.sinks.k1. type = logger # Use a channel which buffers events in memory a1.channels.c1. type = memory a1.channels.c1.capacity = 1000 a1.channels.c1.transactionCapacity = 100 # Bind the source and sink to the channel a1.sources.r1.channels = c1 a1.sinks.k1.channel = c1 |
b)启动flume agent a1
?
1 | root@m1: /home/hadoop # /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/post_json.conf -n a1 -Dflume.root.logger=INFO,console |
c)生成JSON 格式的POST request
?
1 | root@m1: /home/hadoop # curl -X POST -d ‘[{ "headers" :{"a" : "a1","b" : "b1"},"body" : "idoall.org_body"}]‘ http://localhost:8888 |
d)在m1的控制台,可以看到以下信息:
?
1 2 3 4 5 6 7 8 9 10 11 | 14 /08/10 11:49:59 INFO node.Application: Starting Channel c1 14 /08/10 11:49:59 INFO instrumentation.MonitoredCounterGroup: Monitored counter group for type : CHANNEL, name: c1: Successfully registered new MBean. 14 /08/10 11:49:59 INFO instrumentation.MonitoredCounterGroup: Component type : CHANNEL, name: c1 started 14 /08/10 11:49:59 INFO node.Application: Starting Sink k1 14 /08/10 11:49:59 INFO node.Application: Starting Source r1 14 /08/10 11:49:59 INFO mortbay.log: Logging to org.slf4j.impl.Log4jLoggerAdapter(org.mortbay.log) via org.mortbay.log.Slf4jLog 14 /08/10 11:49:59 INFO mortbay.log: jetty-6.1.26 14 /08/10 11:50:00 INFO mortbay.log: Started SelectChannelConnector@0.0.0.0:8888 14 /08/10 11:50:00 INFO instrumentation.MonitoredCounterGroup: Monitored counter group for type : SOURCE, name: r1: Successfully registered new MBean. 14 /08/10 11:50:00 INFO instrumentation.MonitoredCounterGroup: Component type : SOURCE, name: r1 started 14 /08/10 12:14:32 INFO sink.LoggerSink: Event: { headers:{b=b1, a=a1} body: 69 64 6F 61 6C 6C 2E 6F 72 67 5F 62 6F 64 79 idoall.org_body } |
6)案例6:Hadoop sink
其中关于hadoop2.2.0部分的安装部署,请参考文章《ubuntu12.04+hadoop2.2.0+zookeeper3.4.5+hbase0.96.2+hive0.13.1分布式环境部署》
a)创建agent配置文件
?
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 | root@m1: /home/hadoop # vi /home/hadoop/flume-1.5.0-bin/conf/hdfs_sink.conf a1.sources = r1 a1.sinks = k1 a1.channels = c1 # Describe/configure the source a1.sources.r1. type = syslogtcp a1.sources.r1.port = 5140 a1.sources.r1.host = localhost a1.sources.r1.channels = c1 # Describe the sink a1.sinks.k1. type = hdfs a1.sinks.k1.channel = c1 a1.sinks.k1.hdfs.path = hdfs: //m1 :9000 /user/flume/syslogtcp a1.sinks.k1.hdfs.filePrefix = Syslog a1.sinks.k1.hdfs.round = true a1.sinks.k1.hdfs.roundValue = http://www.mamicode.com/10 a1.sinks.k1.hdfs.roundUnit = minute # Use a channel which buffers events in memory a1.channels.c1. type = memory a1.channels.c1.capacity = 1000 a1.channels.c1.transactionCapacity = 100 # Bind the source and sink to the channel a1.sources.r1.channels = c1 a1.sinks.k1.channel = c1 |
b)启动flume agent a1
?
1 | root@m1: /home/hadoop # /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/hdfs_sink.conf -n a1 -Dflume.root.logger=INFO,console |
c)测试产生syslog
?
1 | root@m1: /home/hadoop # echo "hello idoall flume -> hadoop testing one" | nc localhost 5140 |
d)在m1的控制台,可以看到以下信息:
?
1 2 3 4 5 6 7 8 9 10 11 12 13 14 | 14 /08/10 12:20:39 INFO instrumentation.MonitoredCounterGroup: Monitored counter group for type : CHANNEL, name: c1: Successfully registered new MBean. 14 /08/10 12:20:39 INFO instrumentation.MonitoredCounterGroup: Component type : CHANNEL, name: c1 started 14 /08/10 12:20:39 INFO node.Application: Starting Sink k1 14 /08/10 12:20:39 INFO node.Application: Starting Source r1 14 /08/10 12:20:39 INFO instrumentation.MonitoredCounterGroup: Monitored counter group for type : SINK, name: k1: Successfully registered new MBean. 14 /08/10 12:20:39 INFO instrumentation.MonitoredCounterGroup: Component type : SINK, name: k1 started 14 /08/10 12:20:39 INFO source .SyslogTcpSource: Syslog TCP Source starting... 14 /08/10 12:21:46 WARN source .SyslogUtils: Event created from Invalid Syslog data. 14 /08/10 12:21:49 INFO hdfs.HDFSSequenceFile: writeFormat = Writable, UseRawLocalFileSystem = false 14 /08/10 12:21:49 INFO hdfs.BucketWriter: Creating hdfs: //m1 :9000 /user/flume/syslogtcp//Syslog .1407644509504.tmp 14 /08/10 12:22:20 INFO hdfs.BucketWriter: Closing hdfs: //m1 :9000 /user/flume/syslogtcp//Syslog .1407644509504.tmp 14 /08/10 12:22:20 INFO hdfs.BucketWriter: Close tries incremented 14 /08/10 12:22:20 INFO hdfs.BucketWriter: Renaming hdfs: //m1 :9000 /user/flume/syslogtcp/Syslog .1407644509504.tmp to hdfs: //m1 :9000 /user/flume/syslogtcp/Syslog .1407644509504 14 /08/10 12:22:20 INFO hdfs.HDFSEventSink: Writer callback called. |
e)在m1上再打开一个窗口,去hadoop上检查文件是否生成
?
1 2 3 4 5 | root@m1: /home/hadoop # /home/hadoop/hadoop-2.2.0/bin/hadoop fs -ls /user/flume/syslogtcp Found 1 items -rw-r--r-- 3 root supergroup 155 2014-08-10 12:22 /user/flume/syslogtcp/Syslog .1407644509504 root@m1: /home/hadoop # /home/hadoop/hadoop-2.2.0/bin/hadoop fs -cat /user/flume/syslogtcp/Syslog.1407644509504 SEQ!org.apache.hadoop.io.LongWritable"org.apache.hadoop.io.BytesWritable^;>Gv$hello idoall flume -> hadoop testing one |
7)案例7:File Roll Sink
a)创建agent配置文件
?
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | root@m1: /home/hadoop # vi /home/hadoop/flume-1.5.0-bin/conf/file_roll.conf a1.sources = r1 a1.sinks = k1 a1.channels = c1 # Describe/configure the source a1.sources.r1. type = syslogtcp a1.sources.r1.port = 5555 a1.sources.r1.host = localhost a1.sources.r1.channels = c1 # Describe the sink a1.sinks.k1. type = file_roll a1.sinks.k1.sink.directory = /home/hadoop/flume-1 .5.0-bin /logs # Use a channel which buffers events in memory a1.channels.c1. type = memory a1.channels.c1.capacity = 1000 a1.channels.c1.transactionCapacity = 100 # Bind the source and sink to the channel a1.sources.r1.channels = c1 a1.sinks.k1.channel = c1 |
b)启动flume agent a1
?
1 | root@m1: /home/hadoop # /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/file_roll.conf -n a1 -Dflume.root.logger=INFO,console |
c)测试产生log
?
1 2 | root@m1: /home/hadoop # echo "hello idoall.org syslog" | nc localhost 5555 root@m1: /home/hadoop # echo "hello idoall.org syslog 2" | nc localhost 5555 |
d)查看/home/hadoop/flume-1.5.0-bin/logs下是否生成文件,默认每30秒生成一个新文件
?
1 2 3 4 5 6 7 8 9 10 | root@m1: /home/hadoop # ll /home/hadoop/flume-1.5.0-bin/logs 总用量 272 drwxr-xr-x 3 root root 4096 Aug 10 12:50 ./ drwxr-xr-x 9 root root 4096 Aug 10 10:59 ../ -rw-r--r-- 1 root root 50 Aug 10 12:49 1407646164782-1 -rw-r--r-- 1 root root 0 Aug 10 12:49 1407646164782-2 -rw-r--r-- 1 root root 0 Aug 10 12:50 1407646164782-3 root@m1: /home/hadoop # cat /home/hadoop/flume-1.5.0-bin/logs/1407646164782-1 /home/hadoop/flume-1.5.0-bin/logs/1407646164782-2 hello idoall.org syslog hello idoall.org syslog 2 |
8)案例8:Replicating Channel Selector
Flume支持Fan out流从一个源到多个通道。有两种模式的Fan out,分别是复制和复用。在复制的情况下,流的事件被发送到所有的配置通道。在复用的情况下,事件被发送到可用的渠道中的一个子集。Fan out流需要指定源和Fan out通道的规则。
这次我们需要用到m1,m2两台机器
a)在m1创建replicating_Channel_Selector配置文件
?
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 | root@m1: /home/hadoop # vi /home/hadoop/flume-1.5.0-bin/conf/replicating_Channel_Selector.conf a1.sources = r1 a1.sinks = k1 k2 a1.channels = c1 c2 # Describe/configure the source a1.sources.r1. type = syslogtcp a1.sources.r1.port = 5140 a1.sources.r1.host = localhost a1.sources.r1.channels = c1 c2 a1.sources.r1.selector. type = replicating # Describe the sink a1.sinks.k1. type = avro a1.sinks.k1.channel = c1 a1.sinks.k1. hostname = m1 a1.sinks.k1.port = 5555 a1.sinks.k2. type = avro a1.sinks.k2.channel = c2 a1.sinks.k2. hostname = m2 a1.sinks.k2.port = 5555 # Use a channel which buffers events in memory a1.channels.c1. type = memory a1.channels.c1.capacity = 1000 a1.channels.c1.transactionCapacity = 100 a1.channels.c2. type = memory a1.channels.c2.capacity = 1000 a1.channels.c2.transactionCapacity = 100 |
b)在m1创建replicating_Channel_Selector_avro配置文件
?
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | root@m1: /home/hadoop # vi /home/hadoop/flume-1.5.0-bin/conf/replicating_Channel_Selector_avro.conf a1.sources = r1 a1.sinks = k1 a1.channels = c1 # Describe/configure the source a1.sources.r1. type = avro a1.sources.r1.channels = c1 a1.sources.r1.bind = 0.0.0.0 a1.sources.r1.port = 5555 # Describe the sink a1.sinks.k1. type = logger # Use a channel which buffers events in memory a1.channels.c1. type = memory a1.channels.c1.capacity = 1000 a1.channels.c1.transactionCapacity = 100 # Bind the source and sink to the channel a1.sources.r1.channels = c1 a1.sinks.k1.channel = c1 |
c)在m1上将2个配置文件复制到m2上一份
?
1 2 | root@m1: /home/hadoop/flume-1 .5.0-bin # scp -r /home/hadoop/flume-1.5.0-bin/conf/replicating_Channel_Selector.conf root@m2:/home/hadoop/flume-1.5.0-bin/conf/replicating_Channel_Selector.conf root@m1: /home/hadoop/flume-1 .5.0-bin # scp -r /home/hadoop/flume-1.5.0-bin/conf/replicating_Channel_Selector_avro.conf root@m2:/home/hadoop/flume-1.5.0-bin/conf/replicating_Channel_Selector_avro.conf<br> |
d)打开4个窗口,在m1和m2上同时启动两个flume agent
?
1 2 | root@m1: /home/hadoop # /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/replicating_Channel_Selector_avro.conf -n a1 -Dflume.root.logger=INFO,console root@m1: /home/hadoop # /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/replicating_Channel_Selector.conf -n a1 -Dflume.root.logger=INFO,console |
e)然后在m1或m2的任意一台机器上,测试产生syslog
?
1 | root@m1: /home/hadoop # echo "hello idoall.org syslog" | nc localhost 5140 |
f)在m1和m2的sink窗口,分别可以看到以下信息,这说明信息得到了同步:
?
1 2 3 4 5 6 7 8 | 14 /08/10 14:08:18 INFO ipc.NettyServer: Connection to /192 .168.1.51:46844 disconnected. 14 /08/10 14:08:52 INFO ipc.NettyServer: [ id : 0x90f8fe1f, /192 .168.1.50:35873 => /192 .168.1.50:5555] OPEN 14 /08/10 14:08:52 INFO ipc.NettyServer: [ id : 0x90f8fe1f, /192 .168.1.50:35873 => /192 .168.1.50:5555] BOUND: /192 .168.1.50:5555 14 /08/10 14:08:52 INFO ipc.NettyServer: [ id : 0x90f8fe1f, /192 .168.1.50:35873 => /192 .168.1.50:5555] CONNECTED: /192 .168.1.50:35873 14 /08/10 14:08:59 INFO ipc.NettyServer: [ id : 0xd6318635, /192 .168.1.51:46858 => /192 .168.1.50:5555] OPEN 14 /08/10 14:08:59 INFO ipc.NettyServer: [ id : 0xd6318635, /192 .168.1.51:46858 => /192 .168.1.50:5555] BOUND: /192 .168.1.50:5555 14 /08/10 14:08:59 INFO ipc.NettyServer: [ id : 0xd6318635, /192 .168.1.51:46858 => /192 .168.1.50:5555] CONNECTED: /192 .168.1.51:46858 14 /08/10 14:09:20 INFO sink.LoggerSink: Event: { headers:{Severity=0, flume.syslog.status=Invalid, Facility=0} body: 68 65 6C 6C 6F 20 69 64 6F 61 6C 6C 2E 6F 72 67 hello idoall.org } |
9)案例9:Multiplexing Channel Selector
a)在m1创建Multiplexing_Channel_Selector配置文件
?
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 | root@m1: /home/hadoop # vi /home/hadoop/flume-1.5.0-bin/conf/Multiplexing_Channel_Selector.conf a1.sources = r1 a1.sinks = k1 k2 a1.channels = c1 c2 # Describe/configure the source a1.sources.r1. type = org.apache.flume. source .http.HTTPSource a1.sources.r1.port = 5140 a1.sources.r1.channels = c1 c2 a1.sources.r1.selector. type = multiplexing a1.sources.r1.selector.header = type #映射允许每个值通道可以重叠。默认值可以包含任意数量的通道。 a1.sources.r1.selector.mapping.baidu = c1 a1.sources.r1.selector.mapping.ali = c2 a1.sources.r1.selector.default = c1 # Describe the sink a1.sinks.k1. type = avro a1.sinks.k1.channel = c1 a1.sinks.k1. hostname = m1 a1.sinks.k1.port = 5555 a1.sinks.k2. type = avro a1.sinks.k2.channel = c2 a1.sinks.k2. hostname = m2 a1.sinks.k2.port = 5555 # Use a channel which buffers events in memory a1.channels.c1. type = memory a1.channels.c1.capacity = 1000 a1.channels.c1.transactionCapacity = 100 a1.channels.c2. type = memory a1.channels.c2.capacity = 1000 a1.channels.c2.transactionCapacity = 100 |
b)在m1创建Multiplexing_Channel_Selector_avro配置文件
?
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | root@m1: /home/hadoop # vi /home/hadoop/flume-1.5.0-bin/conf/Multiplexing_Channel_Selector_avro.conf a1.sources = r1 a1.sinks = k1 a1.channels = c1 # Describe/configure the source a1.sources.r1. type = avro a1.sources.r1.channels = c1 a1.sources.r1.bind = 0.0.0.0 a1.sources.r1.port = 5555 # Describe the sink a1.sinks.k1. type = logger # Use a channel which buffers events in memory a1.channels.c1. type = memory a1.channels.c1.capacity = 1000 a1.channels.c1.transactionCapacity = 100 # Bind the source and sink to the channel a1.sources.r1.channels = c1 a1.sinks.k1.channel = c1 |
c)将2个配置文件复制到m2上一份
?
1 2 | root@m1: /home/hadoop/flume-1 .5.0-bin # scp -r /home/hadoop/flume-1.5.0-bin/conf/Multiplexing_Channel_Selector.conf root@m2:/home/hadoop/flume-1.5.0-bin/conf/Multiplexing_Channel_Selector.conf root@m1: /home/hadoop/flume-1 .5.0-bin # scp -r /home/hadoop/flume-1.5.0-bin/conf/Multiplexing_Channel_Selector_avro.conf root@m2:/home/hadoop/flume-1.5.0-bin/conf/Multiplexing_Channel_Selector_avro.conf |
d)打开4个窗口,在m1和m2上同时启动两个flume agent
?
1 2 | root@m1: /home/hadoop # /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/Multiplexing_Channel_Selector_avro.conf -n a1 -Dflume.root.logger=INFO,console root@m1: /home/hadoop # /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/Multiplexing_Channel_Selector.conf -n a1 -Dflume.root.logger=INFO,console |
e)然后在m1或m2的任意一台机器上,测试产生syslog
?
1 | root@m1: /home/hadoop # curl -X POST -d ‘[{ "headers" :{"type" : "baidu"},"body" : "idoall_TEST1"}]‘ http://localhost:5140 && curl -X POST -d ‘[{ "headers" :{"type" : "ali"},"body" : "idoall_TEST2"}]‘ http://localhost:5140 && curl -X POST -d ‘[{ "headers" :{"type" : "qq"},"body" : "idoall_TEST3"}]‘ http://localhost:5140 |
f)在m1的sink窗口,可以看到以下信息:
?
1 2 3 4 5 6 7 8 9 10 11 12 13 14 | 14 /08/10 14:32:21 INFO node.Application: Starting Sink k1 14 /08/10 14:32:21 INFO node.Application: Starting Source r1 14 /08/10 14:32:21 INFO source .AvroSource: Starting Avro source r1: { bindAddress: 0.0.0.0, port: 5555 }... 14 /08/10 14:32:21 INFO instrumentation.MonitoredCounterGroup: Monitored counter group for type : SOURCE, name: r1: Successfully registered new MBean. 14 /08/10 14:32:21 INFO instrumentation.MonitoredCounterGroup: Component type : SOURCE, name: r1 started 14 /08/10 14:32:21 INFO source .AvroSource: Avro source r1 started. 14 /08/10 14:32:36 INFO ipc.NettyServer: [ id : 0xcf00eea6, /192 .168.1.50:35916 => /192 .168.1.50:5555] OPEN 14 /08/10 14:32:36 INFO ipc.NettyServer: [ id : 0xcf00eea6, /192 .168.1.50:35916 => /192 .168.1.50:5555] BOUND: /192 .168.1.50:5555 14 /08/10 14:32:36 INFO ipc.NettyServer: [ id : 0xcf00eea6, /192 .168.1.50:35916 => /192 .168.1.50:5555] CONNECTED: /192 .168.1.50:35916 14 /08/10 14:32:44 INFO ipc.NettyServer: [ id : 0x432f5468, /192 .168.1.51:46945 => /192 .168.1.50:5555] OPEN 14 /08/10 14:32:44 INFO ipc.NettyServer: [ id : 0x432f5468, /192 .168.1.51:46945 => /192 .168.1.50:5555] BOUND: /192 .168.1.50:5555 14 /08/10 14:32:44 INFO ipc.NettyServer: [ id : 0x432f5468, /192 .168.1.51:46945 => /192 .168.1.50:5555] CONNECTED: /192 .168.1.51:46945 14 /08/10 14:34:11 INFO sink.LoggerSink: Event: { headers:{ type =baidu} body: 69 64 6F 61 6C 6C 5F 54 45 53 54 31 idoall_TEST1 } 14 /08/10 14:34:57 INFO sink.LoggerSink: Event: { headers:{ type =qq} body: 69 64 6F 61 6C 6C 5F 54 45 53 54 33 idoall_TEST3 } |
g)在m2的sink窗口,可以看到以下信息:
?
1 2 3 4 5 6 7 8 9 10 11 12 13 | 14 /08/10 14:32:27 INFO node.Application: Starting Sink k1 14 /08/10 14:32:27 INFO node.Application: Starting Source r1 14 /08/10 14:32:27 INFO source .AvroSource: Starting Avro source r1: { bindAddress: 0.0.0.0, port: 5555 }... 14 /08/10 14:32:27 INFO instrumentation.MonitoredCounterGroup: Monitored counter group for type : SOURCE, name: r1: Successfully registered new MBean. 14 /08/10 14:32:27 INFO instrumentation.MonitoredCounterGroup: Component type : SOURCE, name: r1 started 14 /08/10 14:32:27 INFO source .AvroSource: Avro source r1 started. 14 /08/10 14:32:36 INFO ipc.NettyServer: [ id : 0x7c2f0aec, /192 .168.1.50:38104 => /192 .168.1.51:5555] OPEN 14 /08/10 14:32:36 INFO ipc.NettyServer: [ id : 0x7c2f0aec, /192 .168.1.50:38104 => /192 .168.1.51:5555] BOUND: /192 .168.1.51:5555 14 /08/10 14:32:36 INFO ipc.NettyServer: [ id : 0x7c2f0aec, /192 .168.1.50:38104 => /192 .168.1.51:5555] CONNECTED: /192 .168.1.50:38104 14 /08/10 14:32:44 INFO ipc.NettyServer: [ id : 0x3d36f553, /192 .168.1.51:48599 => /192 .168.1.51:5555] OPEN 14 /08/10 14:32:44 INFO ipc.NettyServer: [ id : 0x3d36f553, /192 .168.1.51:48599 => /192 .168.1.51:5555] BOUND: /192 .168.1.51:5555 14 /08/10 14:32:44 INFO ipc.NettyServer: [ id : 0x3d36f553, /192 .168.1.51:48599 => /192 .168.1.51:5555] CONNECTED: /192 .168.1.51:48599 14 /08/10 14:34:33 INFO sink.LoggerSink: Event: { headers:{ type =ali} body: 69 64 6F 61 6C 6C 5F 54 45 53 54 32 idoall_TEST2 } |
可以看到,根据header中不同的条件分布到不同的channel上
10)案例10:Flume Sink Processors
failover的机器是一直发送给其中一个sink,当这个sink不可用的时候,自动发送到下一个sink。
a)在m1创建Flume_Sink_Processors配置文件
?
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 | root@m1: /home/hadoop # vi /home/hadoop/flume-1.5.0-bin/conf/Flume_Sink_Processors.conf a1.sources = r1 a1.sinks = k1 k2 a1.channels = c1 c2 #这个是配置failover的关键,需要有一个sink group a1.sinkgroups = g1 a1.sinkgroups.g1.sinks = k1 k2 #处理的类型是failover a1.sinkgroups.g1.processor. type = failover #优先级,数字越大优先级越高,每个sink的优先级必须不相同 a1.sinkgroups.g1.processor.priority.k1 = 5 a1.sinkgroups.g1.processor.priority.k2 = 10 #设置为10秒,当然可以根据你的实际状况更改成更快或者很慢 a1.sinkgroups.g1.processor.maxpenalty = 10000 # Describe/configure the source a1.sources.r1. type = syslogtcp a1.sources.r1.port = 5140 a1.sources.r1.channels = c1 c2 a1.sources.r1.selector. type = replicating # Describe the sink a1.sinks.k1. type = avro a1.sinks.k1.channel = c1 a1.sinks.k1. hostname = m1 a1.sinks.k1.port = 5555 a1.sinks.k2. type = avro a1.sinks.k2.channel = c2 a1.sinks.k2. hostname = m2 a1.sinks.k2.port = 5555 # Use a channel which buffers events in memory a1.channels.c1. type = memory a1.channels.c1.capacity = 1000 a1.channels.c1.transactionCapacity = 100 a1.channels.c2. type = memory a1.channels.c2.capacity = 1000 a1.channels.c2.transactionCapacity = 100 |
b)在m1创建Flume_Sink_Processors_avro配置文件
?
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | root@m1: /home/hadoop # vi /home/hadoop/flume-1.5.0-bin/conf/Flume_Sink_Processors_avro.conf a1.sources = r1 a1.sinks = k1 a1.channels = c1 # Describe/configure the source a1.sources.r1. type = avro a1.sources.r1.channels = c1 a1.sources.r1.bind = 0.0.0.0 a1.sources.r1.port = 5555 # Describe the sink a1.sinks.k1. type = logger # Use a channel which buffers events in memory a1.channels.c1. type = memory a1.channels.c1.capacity = 1000 a1.channels.c1.transactionCapacity = 100 # Bind the source and sink to the channel a1.sources.r1.channels = c1 a1.sinks.k1.channel = c1 |
c)将2个配置文件复制到m2上一份
?
1 2 | root@m1: /home/hadoop/flume-1 .5.0-bin # scp -r /home/hadoop/flume-1.5.0-bin/conf/Flume_Sink_Processors.conf root@m2:/home/hadoop/flume-1.5.0-bin/conf/Flume_Sink_Processors.conf root@m1: /home/hadoop/flume-1 .5.0-bin # scp -r /home/hadoop/flume-1.5.0-bin/conf/Flume_Sink_Processors_avro.conf root@m2:/home/hadoop/flume-1.5.0-bin/conf/Flume_Sink_Processors_avro.conf |
d)打开4个窗口,在m1和m2上同时启动两个flume agent
?
1 2 | root@m1: /home/hadoop # /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/Flume_Sink_Processors_avro.conf -n a1 -Dflume.root.logger=INFO,console root@m1: /home/hadoop # /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/Flume_Sink_Processors.conf -n a1 -Dflume.root.logger=INFO,console |
e)然后在m1或m2的任意一台机器上,测试产生log
?
1 | root@m1: /home/hadoop # echo "idoall.org test1 failover" | nc localhost 5140 |
f)因为m2的优先级高,所以在m2的sink窗口,可以看到以下信息,而m1没有:
?
1 2 3 4 5 | 14 /08/10 15:02:46 INFO ipc.NettyServer: Connection to /192 .168.1.51:48692 disconnected. 14 /08/10 15:03:12 INFO ipc.NettyServer: [ id : 0x09a14036, /192 .168.1.51:48704 => /192 .168.1.51:5555] OPEN 14 /08/10 15:03:12 INFO ipc.NettyServer: [ id : 0x09a14036, /192 .168.1.51:48704 => /192 .168.1.51:5555] BOUND: /192 .168.1.51:5555 14 /08/10 15:03:12 INFO ipc.NettyServer: [ id : 0x09a14036, /192 .168.1.51:48704 => /192 .168.1.51:5555] CONNECTED: /192 .168.1.51:48704 14 /08/10 15:03:26 INFO sink.LoggerSink: Event: { headers:{Severity=0, flume.syslog.status=Invalid, Facility=0} body: 69 64 6F 61 6C 6C 2E 6F 72 67 20 74 65 73 74 31 idoall.org test1 } |
g)这时我们停止掉m2机器上的sink(ctrl+c),再次输出测试数据:
?
1 | root@m1: /home/hadoop # echo "idoall.org test2 failover" | nc localhost 5140 |
h)可以在m1的sink窗口,看到读取到了刚才发送的两条测试数据:
?
1 2 3 4 5 6 | 14 /08/10 15:02:46 INFO ipc.NettyServer: Connection to /192 .168.1.51:47036 disconnected. 14 /08/10 15:03:12 INFO ipc.NettyServer: [ id : 0xbcf79851, /192 .168.1.51:47048 => /192 .168.1.50:5555] OPEN 14 /08/10 15:03:12 INFO ipc.NettyServer: [ id : 0xbcf79851, /192 .168.1.51:47048 => /192 .168.1.50:5555] BOUND: /192 .168.1.50:5555 14 /08/10 15:03:12 INFO ipc.NettyServer: [ id : 0xbcf79851, /192 .168.1.51:47048 => /192 .168.1.50:5555] CONNECTED: /192 .168.1.51:47048 14 /08/10 15:07:56 INFO sink.LoggerSink: Event: { headers:{Severity=0, flume.syslog.status=Invalid, Facility=0} body: 69 64 6F 61 6C 6C 2E 6F 72 67 20 74 65 73 74 31 idoall.org test1 } 14 /08/10 15:07:56 INFO sink.LoggerSink: Event: { headers:{Severity=0, flume.syslog.status=Invalid, Facility=0} body: 69 64 6F 61 6C 6C 2E 6F 72 67 20 74 65 73 74 32 idoall.org test2 } |
i)我们再在m2的sink窗口中,启动sink:
?
1 | root@m1: /home/hadoop # /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/Flume_Sink_Processors_avro.conf -n a1 -Dflume.root.logger=INFO,console |
j)输入两批测试数据:
?
1 | root@m1: /home/hadoop # echo "idoall.org test3 failover" | nc localhost 5140 && echo "idoall.org test4 failover" | nc localhost 5140 |
k)在m2的sink窗口,我们可以看到以下信息,因为优先级的关系,log消息会再次落到m2上:
?
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | 14 /08/10 15:09:47 INFO node.Application: Starting Sink k1 14 /08/10 15:09:47 INFO node.Application: Starting Source r1 14 /08/10 15:09:47 INFO source .AvroSource: Starting Avro source r1: { bindAddress: 0.0.0.0, port: 5555 }... 14 /08/10 15:09:47 INFO instrumentation.MonitoredCounterGroup: Monitored counter group for type : SOURCE, name: r1: Successfully registered new MBean. 14 /08/10 15:09:47 INFO instrumentation.MonitoredCounterGroup: Component type : SOURCE, name: r1 started 14 /08/10 15:09:47 INFO source .AvroSource: Avro source r1 started. 14 /08/10 15:09:54 INFO ipc.NettyServer: [ id : 0x96615732, /192 .168.1.51:48741 => /192 .168.1.51:5555] OPEN 14 /08/10 15:09:54 INFO ipc.NettyServer: [ id : 0x96615732, /192 .168.1.51:48741 => /192 .168.1.51:5555] BOUND: /192 .168.1.51:5555 14 /08/10 15:09:54 INFO ipc.NettyServer: [ id : 0x96615732, /192 .168.1.51:48741 => /192 .168.1.51:5555] CONNECTED: /192 .168.1.51:48741 14 /08/10 15:09:57 INFO sink.LoggerSink: Event: { headers:{Severity=0, flume.syslog.status=Invalid, Facility=0} body: 69 64 6F 61 6C 6C 2E 6F 72 67 20 74 65 73 74 32 idoall.org test2 } 14 /08/10 15:10:43 INFO ipc.NettyServer: [ id : 0x12621f9a, /192 .168.1.50:38166 => /192 .168.1.51:5555] OPEN 14 /08/10 15:10:43 INFO ipc.NettyServer: [ id : 0x12621f9a, /192 .168.1.50:38166 => /192 .168.1.51:5555] BOUND: /192 .168.1.51:5555 14 /08/10 15:10:43 INFO ipc.NettyServer: [ id : 0x12621f9a, /192 .168.1.50:38166 => /192 .168.1.51:5555] CONNECTED: /192 .168.1.50:38166 14 /08/10 15:10:43 INFO sink.LoggerSink: Event: { headers:{Severity=0, flume.syslog.status=Invalid, Facility=0} body: 69 64 6F 61 6C 6C 2E 6F 72 67 20 74 65 73 74 33 idoall.org test3 } 14 /08/10 15:10:43 INFO sink.LoggerSink: Event: { headers:{Severity=0, flume.syslog.status=Invalid, Facility=0} body: 69 64 6F 61 6C 6C 2E 6F 72 67 20 74 65 73 74 34 idoall.org test4 } |
11)案例11:Load balancing Sink Processor
load balance type和failover不同的地方是,load balance有两个配置,一个是轮询,一个是随机。两种情况下如果被选择的sink不可用,就会自动尝试发送到下一个可用的sink上面。
a)在m1创建Load_balancing_Sink_Processors配置文件
?
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 | root@m1: /home/hadoop # vi /home/hadoop/flume-1.5.0-bin/conf/Load_balancing_Sink_Processors.conf a1.sources = r1 a1.sinks = k1 k2 a1.channels = c1 #这个是配置Load balancing的关键,需要有一个sink group a1.sinkgroups = g1 a1.sinkgroups.g1.sinks = k1 k2 a1.sinkgroups.g1.processor. type = load_balance a1.sinkgroups.g1.processor.backoff = true a1.sinkgroups.g1.processor.selector = round_robin # Describe/configure the source a1.sources.r1. type = syslogtcp a1.sources.r1.port = 5140 a1.sources.r1.channels = c1 # Describe the sink a1.sinks.k1. type = avro a1.sinks.k1.channel = c1 a1.sinks.k1. hostname = m1 a1.sinks.k1.port = 5555 a1.sinks.k2. type = avro a1.sinks.k2.channel = c1 a1.sinks.k2. hostname = m2 a1.sinks.k2.port = 5555 # Use a channel which buffers events in memory a1.channels.c1. type = memory a1.channels.c1.capacity = 1000 a1.channels.c1.transactionCapacity = 100 |
b)在m1创建Load_balancing_Sink_Processors_avro配置文件
?
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | root@m1: /home/hadoop # vi /home/hadoop/flume-1.5.0-bin/conf/Load_balancing_Sink_Processors_avro.conf a1.sources = r1 a1.sinks = k1 a1.channels = c1 # Describe/configure the source a1.sources.r1. type = avro a1.sources.r1.channels = c1 a1.sources.r1.bind = 0.0.0.0 a1.sources.r1.port = 5555 # Describe the sink a1.sinks.k1. type = logger # Use a channel which buffers events in memory a1.channels.c1. type = memory a1.channels.c1.capacity = 1000 a1.channels.c1.transactionCapacity = 100 # Bind the source and sink to the channel a1.sources.r1.channels = c1 a1.sinks.k1.channel = c1 |
c)将2个配置文件复制到m2上一份
?
1 2 | root@m1: /home/hadoop/flume-1 .5.0-bin # scp -r /home/hadoop/flume-1.5.0-bin/conf/Load_balancing_Sink_Processors.conf root@m2:/home/hadoop/flume-1.5.0-bin/conf/Load_balancing_Sink_Processors.conf root@m1: /home/hadoop/flume-1 .5.0-bin # scp -r /home/hadoop/flume-1.5.0-bin/conf/Load_balancing_Sink_Processors_avro.conf root@m2:/home/hadoop/flume-1.5.0-bin/conf/Load_balancing_Sink_Processors_avro.conf |
d)打开4个窗口,在m1和m2上同时启动两个flume agent
?
1 2 | root@m1: /home/hadoop # /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/Load_balancing_Sink_Processors_avro.conf -n a1 -Dflume.root.logger=INFO,console root@m1: /home/hadoop # /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/Load_balancing_Sink_Processors.conf -n a1 -Dflume.root.logger=INFO,console |
e)然后在m1或m2的任意一台机器上,测试产生log,一行一行输入,输入太快,容易落到一台机器上
?
1 2 3 4 | root@m1: /home/hadoop # echo "idoall.org test1" | nc localhost 5140 root@m1: /home/hadoop # echo "idoall.org test2" | nc localhost 5140 root@m1: /home/hadoop # echo "idoall.org test3" | nc localhost 5140 root@m1: /home/hadoop # echo "idoall.org test4" | nc localhost 5140 |
f)在m1的sink窗口,可以看到以下信息:
?
1 2 | 14 /08/10 15:35:29 INFO sink.LoggerSink: Event: { headers:{Severity=0, flume.syslog.status=Invalid, Facility=0} body: 69 64 6F 61 6C 6C 2E 6F 72 67 20 74 65 73 74 32 idoall.org test2 } 14 /08/10 15:35:33 INFO sink.LoggerSink: Event: { headers:{Severity=0, flume.syslog.status=Invalid, Facility=0} body: 69 64 6F 61 6C 6C 2E 6F 72 67 20 74 65 73 74 34 idoall.org test4 } |
g)在m2的sink窗口,可以看到以下信息:
?
1 2 | 14 /08/10 15:35:27 INFO sink.LoggerSink: Event: { headers:{Severity=0, flume.syslog.status=Invalid, Facility=0} body: 69 64 6F 61 6C 6C 2E 6F 72 67 20 74 65 73 74 31 idoall.org test1 } 14 /08/10 15:35:29 INFO sink.LoggerSink: Event: { headers:{Severity=0, flume.syslog.status=Invalid, Facility=0} body: 69 64 6F 61 6C 6C 2E 6F 72 67 20 74 65 73 74 33 idoall.org test3 } |
说明轮询模式起到了作用。
12)案例12:Hbase sink
a)在测试之前,请先参考《ubuntu12.04+hadoop2.2.0+zookeeper3.4.5+hbase0.96.2+hive0.13.1分布式环境部署》将hbase启动
b)然后将以下文件复制到flume中:
?
1 2 3 4 5 6 7 8 | cp /home/hadoop/hbase-0 .96.2-hadoop2 /lib/protobuf-java-2 .5.0.jar /home/hadoop/flume-1 .5.0-bin /lib cp /home/hadoop/hbase-0 .96.2-hadoop2 /lib/hbase-client-0 .96.2-hadoop2.jar /home/hadoop/flume-1 .5.0-bin /lib cp /home/hadoop/hbase-0 .96.2-hadoop2 /lib/hbase-common-0 .96.2-hadoop2.jar /home/hadoop/flume-1 .5.0-bin /lib cp /home/hadoop/hbase-0 .96.2-hadoop2 /lib/hbase-protocol-0 .96.2-hadoop2.jar /home/hadoop/flume-1 .5.0-bin /lib cp /home/hadoop/hbase-0 .96.2-hadoop2 /lib/hbase-server-0 .96.2-hadoop2.jar /home/hadoop/flume-1 .5.0-bin /lib cp /home/hadoop/hbase-0 .96.2-hadoop2 /lib/hbase-hadoop2-compat-0 .96.2-hadoop2.jar /home/hadoop/flume-1 .5.0-bin /lib cp /home/hadoop/hbase-0 .96.2-hadoop2 /lib/hbase-hadoop-compat-0 .96.2-hadoop2.jar /home/hadoop/flume-1 .5.0-bin /lib @@@ cp /home/hadoop/hbase-0 .96.2-hadoop2 /lib/htrace-core-2 .04.jar /home/hadoop/flume-1 .5.0-bin /lib |
c)确保test_idoall_org表在hbase中已经存在,test_idoall_org表的格式以及字段请参考《ubuntu12.04+hadoop2.2.0+zookeeper3.4.5+hbase0.96.2+hive0.13.1分布式环境部署》中关于hbase部分的建表代码。
d)在m1创建hbase_simple配置文件
?
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 | root@m1: /home/hadoop # vi /home/hadoop/flume-1.5.0-bin/conf/hbase_simple.conf a1.sources = r1 a1.sinks = k1 a1.channels = c1 # Describe/configure the source a1.sources.r1. type = syslogtcp a1.sources.r1.port = 5140 a1.sources.r1.host = localhost a1.sources.r1.channels = c1 # Describe the sink a1.sinks.k1. type = logger a1.sinks.k1. type = hbase a1.sinks.k1.table = test_idoall_org a1.sinks.k1.columnFamily = name a1.sinks.k1.column = idoall a1.sinks.k1.serializer = org.apache.flume.sink.hbase.RegexHbaseEventSerializer a1.sinks.k1.channel = memoryChannel # Use a channel which buffers events in memory a1.channels.c1. type = memory a1.channels.c1.capacity = 1000 a1.channels.c1.transactionCapacity = 100 # Bind the source and sink to the channel a1.sources.r1.channels = c1 a1.sinks.k1.channel = c1 |
e)启动flume agent
?
1 | /home/hadoop/flume-1 .5.0-bin /bin/flume-ng agent -c . -f /home/hadoop/flume-1 .5.0-bin /conf/hbase_simple .conf -n a1 -Dflume.root.logger=INFO,console |
f)测试产生syslog
?
1 | root@m1: /home/hadoop # echo "hello idoall.org from flume" | nc localhost 5140 |
g)这时登录到hbase中,可以发现新数据已经插入
?
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 | root@m1: /home/hadoop # /home/hadoop/hbase-0.96.2-hadoop2/bin/hbase shell 2014-08-10 16:09:48,984 INFO [main] Configuration.deprecation: hadoop.native.lib is deprecated. Instead, use io.native.lib.available HBase Shell; enter ‘help<RETURN>‘ for list of supported commands. Type "exit<RETURN>" to leave the HBase Shell Version 0.96.2-hadoop2, r1581096, Mon Mar 24 16:03:18 PDT 2014 hbase(main):001:0> list TABLE SLF4J: Class path contains multiple SLF4J bindings. SLF4J: Found binding in [jar: file : /home/hadoop/hbase-0 .96.2-hadoop2 /lib/slf4j-log4j12-1 .6.4.jar! /org/slf4j/impl/StaticLoggerBinder .class] SLF4J: Found binding in [jar: file : /home/hadoop/hadoop-2 .2.0 /share/hadoop/common/lib/slf4j-log4j12-1 .7.5.jar! /org/slf4j/impl/StaticLoggerBinder .class] SLF4J: See http: //www .slf4j.org /codes .html #multiple_bindings for an explanation. hbase2hive_idoall hive2hbase_idoall test_idoall_org 3 row(s) in 2.6880 seconds => [ "hbase2hive_idoall" , "hive2hbase_idoall" , "test_idoall_org" ] hbase(main):002:0> scan "test_idoall_org" ROW COLUMN+CELL 10086 column=name:idoall, timestamp=1406424831473, value=http://www.mamicode.com/idoallvalue 1 row(s) in 0.0550 seconds hbase(main):003:0> scan "test_idoall_org" ROW COLUMN+CELL 10086 column=name:idoall, timestamp=1406424831473, value=http://www.mamicode.com/idoallvalue 1407658495588-XbQCOZrKK8-0 column=name:payload, timestamp=1407658498203, value=http://www.mamicode.com/hello idoall.org from flume 2 row(s) in 0.0200 seconds hbase(main):004:0> quit |
经过这么多flume的例子测试,如果你全部做完后,会发现flume的功能真的很强大,可以进行各种搭配来完成你想要的工作,俗话说师傅领进门,修行在个人,如何能够结合你的产品业务,将flume更好的应用起来,快去动手实践吧。
这篇文章做为一个笔记,希望能够对刚入门的同学起到帮助作用。
---------------------------------------
博文作者:迦壹
博客地址:http://idoall.org/home.php?mod=space&uid=1&do=blog&id=550
转载声明:可以转载, 但必须以超链接形式标明文章原始出处和作者信息及版权声明,谢谢合作!
---------------------------------------
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。