首页 > 代码库 > bzoj2301: [HAOI2011]Problem b

bzoj2301: [HAOI2011]Problem b

莫比乌斯反演学姿势

#include<cstdio>#include<cstring>#include<iostream>#include<algorithm>using namespace std;#define rep(i,s,t) for(int i=s;i<=t;i++)#define dwn(i,s,t) for(int i=s;i>=t;i--)#define clr(x,c) memset(x,c,sizeof(x))#define ll long longint read(){    int x=0;char c=getchar();    while(!isdigit(c)) c=getchar();    while(isdigit(c)) x=x*10+c-‘0‘,c=getchar();    return x;}const int nmax=50005;int mo[nmax],prime[nmax],cnt=0;bool vis[nmax];void init(){    mo[1]=1;    rep(i,2,nmax-1){        if(!vis[i]) prime[++cnt]=i,mo[i]=-1;        rep(j,1,cnt){            if(i*prime[j]>=nmax) break;            vis[i*prime[j]]=1;            if(i%prime[j]==0){                mo[i*prime[j]]=0;break;            }            mo[i*prime[j]]=-mo[i];        }    }    rep(i,2,nmax-1) mo[i]+=mo[i-1];}/*void init(){    mo[1]=1;    rep(i,2,nmax-1){        if(!vis[i]) prime[++cnt]=i,mo[i]=-1;        rep(j,1,cnt){            int tmp=prime[j];            if(i*tmp>=nmax) break;            vis[i*tmp]=1;            if(i%tmp==0) {                mo[i*tmp]=0;break;            }            mo[i*tmp]=-mo[i];        }    }    rep(i,2,nmax-1) mo[i]+=mo[i-1];}*/ll cal(int n,int m,int k){    ll ans=0;n/=k;m/=k;    int last,t=min(n,m);    for(int i=1;i<=t;i=last+1){        last=min(n/(n/i),m/(m/i));        ans+=(ll)(m/i)*(n/i)*(mo[last]-mo[i-1]);    }    return ans;}int main(){    init();    int n=read(),a,b,c,d,k;    rep(i,1,n){        a=read(),b=read(),c=read(),d=read();k=read();        printf("%lld\n",cal(b,d,k)-cal(b,c-1,k)-cal(a-1,d,k)+cal(a-1,c-1,k));    }    return 0;} 

  

2301: [HAOI2011]Problem b

Time Limit: 50 Sec  Memory Limit: 256 MB
Submit: 3780  Solved: 1684
[Submit][Status][Discuss]

Description

 

对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数。



Input

第一行一个整数n,接下来n行每行五个整数,分别表示a、b、c、d、k

 

Output

共n行,每行一个整数表示满足要求的数对(x,y)的个数

 

Sample Input

2

2 5 1 5 1

1 5 1 5 2



Sample Output


14

3



HINT

 



100%的数据满足:1≤n≤50000,1≤a≤b≤50000,1≤c≤d≤50000,1≤k≤50000

 

Source

 
[Submit][Status][Discuss]

bzoj2301: [HAOI2011]Problem b