首页 > 代码库 > 层次分析模型(AHP)及其MATLAB实现
层次分析模型(AHP)及其MATLAB实现
今天用将近一天的时间学习了层次分析模型(AHP),主要参考了一份pdf,这个网站,和暨南大学章老师的课件,现写出一些自己总结的要点。
一、层次分析法的基本步骤:
角度一:
实际问题——分解——>多个因素——建立——>层次结构—
—确定——>诸因素的相对重要性——计算——>权向量—
—判断——>综合决策
角度二:
建立层次结构模型——>构造判断矩阵——>层次单排序——>一致性检验——>层次总排序。
二、几个理解的重点
1.正反矩阵
若矩阵A=(aij)mxn满足以下特征:
(1) aij>0
(2)aij=1/aji
则称矩阵A 为正互反矩阵。
2.一致阵
定义:满足a(ij)·a(jk)=a(ik), i,j,k=1,2,··,n的正互反阵A称一致阵。
性质:A的秩为1,A的唯一非0特征根为n;
A的任一列向量是对应于n的特征向量;
A的归一化特征向量可作为权向量。
注意:
这里想了下,用最大特征根的特征向量替代A,可能是为了最大限度的保存原始数据(A)的信息量(不确定。。。)
3.一致性检验
一致性检验,具体还要涉及组合一致性检验。
三、MATLAB实现
这里先是搜的资料,看到这段代码,代码写得很清晰,这里直接贴在这里。
clc;clear;A=[1 1.2 1.5 1.5;0.833 1 1.2 1.2;0.667 0.833 1 1.2;0.667 0.833 0.833 1]; %因素对比矩阵A,只需要改变矩阵A[m,n]=size(A); %获取指标个数RI=[0 0 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49 1.51];R=rank(A); %求判断矩阵的秩[V,D]=eig(A); %求判断矩阵的特征值和特征向量,V特征值,D特征向量;tz=max(D);B=max(tz); %最大特征值[row, col]=find(D==B); %最大特征值所在位置C=V(:,col); %对应特征向量CI=(B-n)/(n-1); %计算一致性检验指标CICR=CI/RI(1,n); if CR<0.10 disp(‘CI=‘);disp(CI); disp(‘CR=‘);disp(CR); disp(‘对比矩阵A通过一致性检验,各向量权重向量Q为:‘); Q=zeros(n,1); for i=1:n Q(i,1)=C(i,1)/sum(C(:,1)); %特征向量标准化 end Q %输出权重向量else disp(‘对比矩阵A未通过一致性检验,需对对比矩阵A重新构造‘);end
这里是对AHP的一个初步的认识,之后还要深入学习,到时候再继续总结。
层次分析模型(AHP)及其MATLAB实现
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。