首页 > 代码库 > Cats(1)- 从Free开始,Free cats

Cats(1)- 从Free开始,Free cats

  cats是scala的一个新的函数式编程工具库,其设计原理基本继承了scalaz:大家都是haskell typeclass的scala版实现。当然,cats在scalaz的基础上从实现细节、库组织结构和调用方式上进行了一些优化,所以对用户来说:cats的基础数据类型、数据结构在功能上与scalaz是大致相同的,可能有一些语法上的变化。与scalaz著名抽象、复杂的语法表现形式相比,cats的语法可能更形象、简单直白。在scalaz的学习过程中,我们了解到所谓函数式编程就是monadic Programming:即用monad这样的数据类型来构建程序。而实际可行的monadic programming就是用Free-Monad编程了。因为Free-Monad程序是真正可运行的,或者说是可以实现安全运行的,因为它可以保证在固定的堆栈内实现无限运算。我们知道:函数式编程模式的运行方式以递归算法为主,flatMap函数本身就是一种递归算法。这就预示着monadic programming很容易造成堆栈溢出问题(StackOverflowError)。当我们把普通的泛函类型F[A]升格成Free-Monad后就能充分利用Free-Monad安全运算能力来构建实际可运行的程序了。由于我们在前面已经详细的了解了scalaz的大部分typeclass,包括Free,对cats的讨论就从Free开始,聚焦在cats.Free编程模式方面。同时,我们可以在使用cats.Free的过程中对cats的其它数据类型进行补充了解。

cats.Free的类型款式如下:

sealed abstract class Free[S[_], A] extends Product with Serializable {...}

S是个高阶类,就是一种函数式运算。值得注意的是:现在S不需要是个Functor了。因为Free的一个实例Suspend类型是这样的:

/** Suspend the computation with the given suspension. */  private final case class Suspend[S[_], A](a: S[A]) extends Free[S, A]

我们不需要map就可以把F[A]升格成Free

/**   * Suspend a value within a functor lifting it to a Free.   */  def liftF[F[_], A](value: F[A]): Free[F, A] = Suspend(value)

 我们在scalaz.Free的讨论中并没能详尽地分析在什么情况下S[_]必须是个Functor。下面我们需要用一些篇幅来解析。

Free程序的特点是算式(description)/算法(implementation)关注分离(separation of concern):我们用一组数据类型来模拟一种编程语句ADT(algebraic data type),这一组ADT就形成了一种定制的编程语言DSL(domain specific language)。Free的编程部分就是用DSL来描述程序功能(description of purpose),即算式了。算法即用DSL描述的功能的具体实现,可以有多种的功能实现方式。我们先看个简单的DSL:

 1 import cats.free._ 2 import cats.Functor 3 object catsFree { 4   object ADTs { 5     sealed trait Interact[+A] 6     object Interact { 7       case class Ask(prompt: String) extends Interact[String] 8       case class Tell(msg: String) extends Interact[Unit] 9       10       def ask(prompt: String): Free[Interact,String] = Free.liftF(Ask(prompt))11       def tell(msg: String): Free[Interact,Unit] = Free.liftF(Tell(msg))12 13 14       implicit object interactFunctor extends Functor[Interact]  {15         def map[A,B](ia: Interact[A])(f: A => B): Interact[B] = ???16       /*   ia match {17            case Ask(p) => ???18            case Tell(m) => ???19         } */20       }  21     }22   }23   object DSLs {24     import ADTs._25     import Interact._26     val prg: Free[Interact,Unit] = for {27       first <- ask("What‘s your first name?")28       last <- ask("What‘s your last name?")29       _ <- tell(s"Hello $first $last")30     } yield()31   }

在这个例子里Interact并不是一个Functor,因为我们无法获取Interact Functor实例的map函数。先让我们分析一下Functor的map:

1      implicit object interactFunctor extends Functor[Interact]  {2         def map[A,B](ia: Interact[A])(f: A => B): Interact[B] = ia match {3            case Ask(p) => ???4            case Tell(m) => ???5         }6       }

map的作用是用一个函数A => B把F[A]转成F[B]。也就是把语句状态从F[A]转成F[B],但在Interact的情况里F[B]已经是明确的Interact[Unit]和Interact[String]两种状态,而map的f是A => B,在上面的示范里我们该如何施用f来获取这个Interact[B]呢?从上面的示范里我们观察可以得出Ask和Tell这两个ADT纯粹是为了模拟ask和tell这两个函数。ask和tell分别返回Free版本的String,Unit结果。可以说:Interact并没有转换到下一个状态的要求。那么假如我们把ADT调整成下面这样呢:

 1       sealed trait FunInteract[NS] 2       object FunInteract { 3         case class FunAsk[NS](prompt: String, onInput: String =>  NS) extends FunInteract[NS] 4         case class FunTell[NS](msg: String, ns: NS) extends FunInteract[NS] 5          6         def funAsk(prompt: String): Free[FunInteract,String] = Free.liftF(FunAsk(prompt,identity)) 7         def funAskInt(prompt: String): Free[FunInteract,Int] = Free.liftF(FunAsk(prompt,_.toInt)) 8         def funTell(msg: String): Free[FunInteract,Unit] = Free.liftF(FunTell(msg,())) 9         10         implicit object funInteract extends Functor[FunInteract] {11            def map[A,NS](fa: FunInteract[A])(f: A => NS) = fa match {12               case FunAsk(prompt,input) => FunAsk(prompt,input andThen f)13               case FunTell(msg,ns) => FunTell(msg,f(ns))14            }15         }16       }

现在这两个ADT是有类型参数NS的了:FunAsk[NS],FunTell[NS]。NS代表了ADT当前类型,如FunAsk[Int]、FunTell[String]...,现在这两个ADT都通过类型参数NS变成了可map的对象了,如FunAsk[String] >>> FunAsk[String], FunAsk[String] >>> FunAsk[Int]...。所以我们可以很顺利的实现object funInteract的map函数。但是,一个有趣的现象是:为了实现这种状态转换,如果ADT需要返回操作结果,就必须具备一个引领状态转换的机制,如FunAsk类型里的onInput: String => NS:它代表funAsk函数返回的结果可以指向下一个状态。新增函数funAskInt是个很好的示范:通过返回的String结果将状态转换到FunAsk[Int]状态。函数funTell不返回结果,所以FunTell没有状态转换机制。scalaz旧版本Free.Suspend的类型款式是:Suspend[F[Free,A]],这是一个递归类型,内部的Free代表下一个状态。由于我们必须用F.map才能取出下一个状态,所以F必须是个Functor。我们应该注意到如果ADT是Functor的话会造成Free程序的冗余代码。既然cats.Free对F[A]没有设置Functor门槛,那么我们应该尽量避免使用Functor。

得出对ADT类型要求结论后,我们接着示范cats的Free编程。下面是Free程序的功能实现interpret部分(implementation):

1     import ADTs._2     object iconsole extends (Interact ~> Id) {3       def apply[A](ia: Interact[A]): Id[A] = ia match {4          case Ask(p) => {println(p); readLine}5          case Tell(m) => println(m)6       }7     }8   }

DSL程序的功能实现就是把ADT F[A]对应到实际的指令集G[A],在Free编程里用NaturalTransformation ~>来实现。注意G[A]必须是个Monad。在上面的例子里对应关系是:Interact~>Id,代表直接对应到运算指令println和readLine。我们也可以实现另一个版本: 

 1     type Prompt = String 2     type Reply = String 3     type Message = String 4     type Tester[A] = Map[Prompt,Reply] => (List[Message],A) 5     object tester extends (Interact ~> Tester) { 6       def apply[A](ia: Interact[A]): Tester[A] = ia match { 7         case Ask(p) => { m => (List(), m(p)) } 8         case Tell(m) => { _ => (List(m), ()) } 9       }10     }11     import cats.Monad12     implicit val testerMonad = new Monad[Tester] {13       override def pure[A](a: A): Tester[A] = _ => (List(),a)14       override def flatMap[A,B](ta: Tester[A])(f: A => Tester[B]): Tester[B] = m => {15         val (o1,a1) = ta(m)16         val (o2,a2) = f(a1)(m)17         (o1 ++ o2, a2)18       }19       override def tailRecM[A,B](a: A)(f: A => Tester[Either[A,B]]): Tester[B] =20          defaultTailRecM(a)(f)21     }22   }

上面是个模拟测试:我们用个Map[K,V]来模拟互动,K模拟问prompt,V模拟获取回答Input。测试方式是个Function1,输入测试数据Map,在List[Message]里返回所有Tell产生的信息。上面提到过Tester[A]必须是个Monad,所以我们实现了Tester的Monad实例testMonad。实际上 m=>(List,a)就是个writer函数。所谓的Writer就是包嵌一个对值pair(L,V)的Monad,L代表Log,V代表运算值。Writer的特性就是log所有V的运算过程。我们又可以用Writer来实现这个tester:

 1    import cats.data.WriterT 2     type WF[A] = Map[Prompt,Reply] => A 3     type WriterTester[A] = WriterT[WF,List[Message],A] 4     def testerToWriter[A](f: Map[Prompt,Reply] => (List[Message],A)) = 5     WriterT[WF,List[Message],A](f) 6     object testWriter extends (Interact ~> WriterTester) { 7       import Interact._ 8       def apply[A](ia: Interact[A]): WriterTester[A] = ia match { 9         case Ask(p) => testerToWriter(m => (List(),m(p)))10         case Tell(m) => testerToWriter(_ => (List(m),()))11       }12     }

如果我们用Writer来实现Interact,实际上就是把Ask和Tell都升格成Writer类型。

我们再来看看在cats里是如何运算Free DSL程序的。相对scalaz而言,cats的运算函数简单的多,就一个foldMap,我们来看看它的定义:

/**   * Catamorphism for `Free`.   *   * Run to completion, mapping the suspension with the given   * transformation at each step and accumulating into the monad `M`.   *   * This method uses `tailRecM` to provide stack-safety.   */  final def foldMap[M[_]](f: FunctionK[S, M])(implicit M: Monad[M], r: RecursiveTailRecM[M]): M[A] =    r.sameType(M).tailRecM(this)(_.step match {      case Pure(a) => M.pure(Right(a))      case Suspend(sa) => M.map(f(sa))(Right(_))      case FlatMapped(c, g) => M.map(c.foldMap(f))(cc => Left(g(cc)))    })

除了要求M是个Monad之外,cats还要求M的RecursiveTailRecM隐式实例。那么什么是RecursiveTailRecM呢:

/** * This is a marker type that promises that the method * .tailRecM for this type is stack-safe for arbitrary recursion. */trait RecursiveTailRecM[F[_]] extends Serializable {  /*   * you can call RecursiveTailRecM[F].sameType(Monad[F]).tailRec   * to have a static check that the types agree   * for safer usage of tailRecM   */  final def sameType[M[_[_]]](m: M[F]): M[F] = m}

我们用RecursiveTailRecM来保证这个Monad类型与tailRecM是匹配的,这是一种运算安全措施,所以在foldMap函数里r.sameType(M).tailRecM保证了tailRecM不会造成StackOverflowError。cats.Free里还有一种不需要类型安全检验的函数foldMapUnsafe:

/**   * Same as foldMap but without a guarantee of stack safety. If the recursion is shallow   * enough, this will work   */  final def foldMapUnsafe[M[_]](f: FunctionK[S, M])(implicit M: Monad[M]): M[A] =    foldMap[M](f)(M, RecursiveTailRecM.create)

这个函数不需要RecursiveTailRecM。下面我们选择能保证运算安全的方法来运算tester:首先我们需要Tester类型的Monad和RecursiveTailRecM实例:

 1     import cats.Monad 2     implicit val testerMonad = new Monad[Tester] with RecursiveTailRecM[Tester]{ 3       override def pure[A](a: A): Tester[A] = _ => (List(),a) 4       override def flatMap[A,B](ta: Tester[A])(f: A => Tester[B]): Tester[B] = m => { 5         val (o1,a1) = ta(m) 6         val (o2,a2) = f(a1)(m) 7         (o1 ++ o2, a2) 8       } 9       override def tailRecM[A,B](a: A)(f: A => Tester[Either[A,B]]): Tester[B] =10         defaultTailRecM(a)(f)11     }

然后我们制造一些测试数据:

1   val testData = http://www.mamicode.com/Map("What‘s your first name?" -> "Tiger",2   "What‘s your last name?" -> "Chan")             //> testData  : scala.collection.immutable.Map[String,String] = Map(What‘s your first name? -> Tiger, What‘s your last name? -> Chan)

测试运算:

1 import ADTs._,DSLs._,IMPLs._2    val testData = http://www.mamicode.com/Map("What‘s your first name?" -> "Tiger",3   "What‘s your last name?" -> "Chan")    ?//> testData  : scala.collection.immutable.Map[String,String] = Map(What‘s your first name? -> Tiger, What‘s your last name? -> Chan)4   val prgRunner = prg.foldMap(tester)    ?//> prgRunner  : demo.ws.catsFree.IMPLs.Tester[Unit] = <function1>5   prgRunner(testData)                    ?//> res0: (List[demo.ws.catsFree.IMPLs.Message], Unit) = (List(Hello Tiger Chan),())

那么如果运算testWriter呢?我们先取得WriterT的Monad实例: 

1    implicit val testWriterMonad =  WriterT.catsDataMonadWriterForWriterT[WF,List[Message]]

然后构建一个RecursiveTailRecM实例后再用同样的测试数据来运算:

1  implicit val testWriterRecT = new RecursiveTailRecM[WriterTester]{}2            ?//> testWriterRecT  : cats.RecursiveTailRecM[demo.ws.catsFree.IMPLs.WriterTester] = demo.ws.catsFree$$anonfun$main$1$$anon$2@6093dd953   val prgRunner = prg.foldMap(testWriter)         //> prgRunner  : demo.ws.catsFree.IMPLs.WriterTester[Unit] = WriterT(<function1>)4   prgRunner.run(testData)._1.map(println)         //> Hello Tiger Chan5                                                   //| res0: List[Unit] = List(())

运算结果一致。

我们再示范一下cats官方文件里关于free monad例子:模拟一个KVStore的put,get,delete功能。ADT设计如下:

1   object ADTs {2     sealed trait KVStoreA[+A]3     case class Put[T](key: String, value: T) extends KVStoreA[Unit]4     case class Get[T](key: String) extends KVStoreA[Option[T]]5     case class Del(key: String) extends KVStoreA[Unit]6   }

对应的模拟功能函数设计如下:

 1     type KVStore[A] = Free[KVStoreA,A] 2     object KVStoreA { 3       def put[T](key: String, value: T): KVStore[Unit] = 4         Free.liftF[KVStoreA,Unit](Put[T](key,value)) 5       def get[T](key: String): KVStore[Option[T]] = 6         Free.liftF[KVStoreA,Option[T]](Get[T](key)) 7       def del(key: String): KVStore[Unit] = 8         Free.liftF[KVStoreA,Unit](Del(key)) 9       def mod[T](key: String, f: T => T): KVStore[Unit] =10         for {11           opt <- get[T](key)12           _ <- opt.map {t => put[T](key,f(t))}.getOrElse(Free.pure(()))13         } yield()14     }

注意一下mod函数:它是由基础函数get和put组合而成。我们要求所有在for内的类型为Free[KVStoreA,?],所以当f函数施用后如果opt变成None时就返回结果Free.pure(()),它的类型是:Free[Nothing,Unit],Nothing是KVStoreA的子类。

现在我们可以用这个DSL来编制KVS程序了: 

 1  object DSLs { 2     import ADTs._ 3     import KVStoreA._ 4     def prg: KVStore[Option[Int]] = 5     for { 6       _ <- put[Int]("wild-cats", 2) 7       _ <- mod[Int]("wild-cats", (_ + 12)) 8       _ <- put[Int]("tame-cats", 5) 9       n <- get[Int]("wild-cats")10       _ <- del("tame-cats")11     } yield n12   }

我们可以通过State数据结纯代码(pure code)方式来实现用immutable map的KVStore:

 1  object IMPLs { 2     import ADTs._ 3     import cats.{~>} 4     import cats.data.State 5     6     type KVStoreState[A] = State[Map[String, Any], A] 7     val kvsToState: KVStoreA ~> KVStoreState = new (KVStoreA ~> KVStoreState) { 8       def apply[A](fa: KVStoreA[A]): KVStoreState[A] = 9         fa match {10           case Put(key, value) => State { (s:Map[String, Any]) =>11              (s.updated(key, value),()) }12           case Get(key) => State { (s:Map[String, Any]) =>13             (s,s.get(key).asInstanceOf[A]) }14           case Del(key) => State { (s:Map[String, Any]) =>15               (s - key, (())) }16         }17     }18   }

我们把KVStoreA ADT模拟成对State结构的S转换(mutation),返回State{S=>(S,A)}。KVStoreState[A]类型的S参数为immutable.Map[String, Any],所以我们在S转换操作时用immutable map的操作函数来构建新的map返回,典型的pure code。我们来运算一下KVStoreA程序:

1   import ADTs._,DSLs._,IMPLs._2   val prgRunner = prg.foldMap(kvsToState)    //> prgRunner  : demo.ws.catsFreeKVS.IMPLs.KVStoreState[Option[Int]] = cats.data.StateT@2cfb4a643   prgRunner.run(Map.empty).value       //> res0: (Map[String,Any], Option[Int]) = (Map(wild-cats -> 14),Some(14))

但是难道不需要Monad、RecursiveTailRecM实例了吗?实际上cats已经提供了State的Monad和RecursiveTailRecM实例:

1   import cats.{Monad,RecursiveTailRecM}2   implicitly[Monad[KVStoreState]]      //> res1: cats.Monad[demo.ws.catsFreeKVS.IMPLs.KVStoreState] = cats.data.StateT Instances$$anon$2@71bbf57e3   implicitly[RecursiveTailRecM[KVStoreState]]     //> res2: cats.RecursiveTailRecM[demo.ws.catsFreeKVS.IMPLs.KVStoreState] = cats.RecursiveTailRecM$$anon$1@7f13d6e

在cats的StateT.scala里可以找到这段代码:

private[data] sealed trait StateTInstances2 {  implicit def catsDataMonadForStateT[F[_], S](implicit F0: Monad[F]): Monad[StateT[F, S, ?]] =    new StateTMonad[F, S] { implicit def F = F0 }  implicit def catsDataRecursiveTailRecMForStateT[F[_]: RecursiveTailRecM, S]: RecursiveTailRecM[StateT[F, S, ?]] = RecursiveTailRecM.create[StateT[F, S, ?]]  implicit def catsDataSemigroupKForStateT[F[_], S](implicit F0: Monad[F], G0: SemigroupK[F]): SemigroupK[StateT[F, S, ?]] =    new StateTSemigroupK[F, S] { implicit def F = F0; implicit def G = G0 }}

我把上面两个示范的源代码提供在下面:

Interact:

  1 import cats.free._  2 import cats.{Functor, RecursiveTailRecM}  3 object catsFree {  4   object ADTs {  5     sealed trait Interact[+A]  6     object Interact {  7       case class Ask(prompt: String) extends Interact[String]  8       case class Tell(msg: String) extends Interact[Unit]  9  10       def ask(prompt: String): Free[Interact,String] = Free.liftF(Ask(prompt)) 11       def tell(msg: String): Free[Interact,Unit] = Free.liftF(Tell(msg)) 12  13  14       implicit object interactFunctor extends Functor[Interact]  { 15         def map[A,B](ia: Interact[A])(f: A => B): Interact[B] = ??? 16         /*   ia match { 17              case Ask(p) => ??? 18              case Tell(m) => ??? 19           } */ 20       } 21  22       sealed trait FunInteract[NS] 23       object FunInteract { 24         case class FunAsk[NS](prompt: String, onInput: String =>  NS) extends FunInteract[NS] 25         case class FunTell[NS](msg: String, ns: NS) extends FunInteract[NS] 26  27         def funAsk(prompt: String): Free[FunInteract,String] = Free.liftF(FunAsk(prompt,identity)) 28         def funAskInt(prompt: String): Free[FunInteract,Int] = Free.liftF(FunAsk(prompt,_.toInt)) 29         def funTell(msg: String): Free[FunInteract,Unit] = Free.liftF(FunTell(msg,())) 30  31         implicit object funInteract extends Functor[FunInteract] { 32           def map[A,NS](fa: FunInteract[A])(f: A => NS) = fa match { 33             case FunAsk(prompt,input) => FunAsk(prompt,input andThen f) 34             case FunTell(msg,ns) => FunTell(msg,f(ns)) 35           } 36         } 37       } 38     } 39   } 40   object DSLs { 41     import ADTs._ 42     import Interact._ 43     val prg: Free[Interact,Unit] = for { 44       first <- ask("What‘s your first name?") 45       last <- ask("What‘s your last name?") 46       _ <- tell(s"Hello $first $last") 47     } yield() 48   } 49   object IMPLs { 50     import cats.{Id,~>} 51     import ADTs._ 52     import Interact._ 53     object iconsole extends (Interact ~> Id) { 54       def apply[A](ia: Interact[A]): Id[A] = ia match { 55         case Ask(p) => {println(p); readLine} 56         case Tell(m) => println(m) 57       } 58     } 59  60     type Prompt = String 61     type Reply = String 62     type Message = String 63     type Tester[A] = Map[Prompt,Reply] => (List[Message],A) 64     object tester extends (Interact ~> Tester) { 65       def apply[A](ia: Interact[A]): Tester[A] = ia match { 66         case Ask(p) => { m => (List(), m(p)) } 67         case Tell(m) => { _ => (List(m), ()) } 68       } 69     } 70     import cats.Monad 71     implicit val testerMonad = new Monad[Tester] with RecursiveTailRecM[Tester]{ 72       override def pure[A](a: A): Tester[A] = _ => (List(),a) 73       override def flatMap[A,B](ta: Tester[A])(f: A => Tester[B]): Tester[B] = m => { 74         val (o1,a1) = ta(m) 75         val (o2,a2) = f(a1)(m) 76         (o1 ++ o2, a2) 77       } 78       override def tailRecM[A,B](a: A)(f: A => Tester[Either[A,B]]): Tester[B] = 79         defaultTailRecM(a)(f) 80     } 81     import cats.data.WriterT 82     import cats.instances.all._ 83     type WF[A] = Map[Prompt,Reply] => A 84     type WriterTester[A] = WriterT[WF,List[Message],A] 85     def testerToWriter[A](f: Map[Prompt,Reply] => (List[Message],A)) = 86       WriterT[WF,List[Message],A](f) 87     implicit val testWriterMonad =  WriterT.catsDataMonadWriterForWriterT[WF,List[Message]] 88     object testWriter extends (Interact ~> WriterTester) { 89       import Interact._ 90       def apply[A](ia: Interact[A]): WriterTester[A] = ia match { 91         case Ask(p) => testerToWriter(m => (List(),m(p))) 92         case Tell(m) => testerToWriter(_ => (List(m),())) 93       } 94     } 95   } 96  97   import ADTs._,DSLs._,IMPLs._ 98    val testData = http://www.mamicode.com/Map("What‘s your first name?" -> "Tiger", 99   "What‘s your last name?" -> "Chan")100   //val prgRunner = prg.foldMap(tester)101   //prgRunner(testData)102   implicit val testWriterRecT = new RecursiveTailRecM[WriterTester]{}103   val prgRunner = prg.foldMap(testWriter)104   prgRunner.run(testData)._1.map(println)105 }

KVStore:

 1 import cats.free._ 2 import cats.instances.all._ 3 object catsFreeKVS { 4   object ADTs { 5     sealed trait KVStoreA[+A] 6     case class Put[T](key: String, value: T) extends KVStoreA[Unit] 7     case class Get[T](key: String) extends KVStoreA[Option[T]] 8     case class Del(key: String) extends KVStoreA[Unit] 9     type KVStore[A] = Free[KVStoreA,A]10     object KVStoreA {11       def put[T](key: String, value: T): KVStore[Unit] =12         Free.liftF[KVStoreA,Unit](Put[T](key,value))13       def get[T](key: String): KVStore[Option[T]] =14         Free.liftF[KVStoreA,Option[T]](Get[T](key))15       def del(key: String): KVStore[Unit] =16         Free.liftF[KVStoreA,Unit](Del(key))17       def mod[T](key: String, f: T => T): KVStore[Unit] =18         for {19           opt <- get[T](key)20           _ <- opt.map {t => put[T](key,f(t))}.getOrElse(Free.pure(()))21         } yield()22     }23   }24   object DSLs {25     import ADTs._26     import KVStoreA._27     def prg: KVStore[Option[Int]] =28     for {29       _ <- put[Int]("wild-cats", 2)30       _ <- mod[Int]("wild-cats", (_ + 12))31       _ <- put[Int]("tame-cats", 5)32       n <- get[Int]("wild-cats")33       _ <- del("tame-cats")34     } yield n35   }36   object IMPLs {37     import ADTs._38     import cats.{~>}39     import cats.data.State40    41     type KVStoreState[A] = State[Map[String, Any], A]42     val kvsToState: KVStoreA ~> KVStoreState = new (KVStoreA ~> KVStoreState) {43       def apply[A](fa: KVStoreA[A]): KVStoreState[A] =44         fa match {45           case Put(key, value) => State { (s:Map[String, Any]) =>46              (s.updated(key, value),()) }47           case Get(key) => State { (s:Map[String, Any]) =>48             (s,s.get(key).asInstanceOf[A]) }49           case Del(key) => State { (s:Map[String, Any]) =>50               (s - key, (())) }51         }52     }53   }54   import ADTs._,DSLs._,IMPLs._55   val prgRunner = prg.foldMap(kvsToState)56   prgRunner.run(Map.empty).value57   58   import cats.{Monad,RecursiveTailRecM}59   implicitly[Monad[KVStoreState]]60   implicitly[RecursiveTailRecM[KVStoreState]]61 }

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cats(1)- 从Free开始,Free cats