首页 > 代码库 > Divisors_组合数因子个数

Divisors_组合数因子个数

Description

Your task in this problem is to determine the number of divisors of Cnk. Just for fun -- or do you need any special reason for such a useful computation?

Input

The input consists of several instances. Each instance consists of a single line containing two integers n and k (0 ≤ k ≤ n ≤ 431), separated by a single space.

Output

For each instance, output a line containing exactly one integer -- the number of distinct divisors of Cnk. For the input instances, this number does not exceed 263 - 1.

Sample Input

5 16 310 4

Sample Output

2616

 

 

 

 

【题意】求C(n,m)的质因子的个数。

【定理】设正整数n的所有素因子分解n=p1^a1*p2^a2*p3^a3****ps^as,那么T(n)=(a1+1)*(a2+1)*(a3+1)***(an+1);(求因子的个数的公式)

1.求出N以内素数

2.ei=[N/pi^1]+ [N/pi^2]+ …… + [N/pi^n] 其中[]为取整。即可以 int ei=0;while(N) ei+=(N/=pi);

3.套公式计算了,M=(e1+1)*(e2+1)*……*(en+1)

#include<iostream>#include<stdio.h>#include<string.h>using namespace std;const int N=450;int prime[1000]={2,3,5};int k=3;long long n,m,cnt[N][N];void get_prime()//将1000以内的素数存入prime数组;{    int flag;    int p=2;    for(int i=7;i<=1000;i+=p)    {        flag=0;        p=6-p;//巧妙的跳过了3的倍数,提高了效率        for(int j=0;prime[j]*prime[j]<=i;j++)        {            if(i%prime[j]==0)            {                flag=1;                break;            }        }        if(!flag) prime[k++]=i;    }}void init(){    memset(cnt,0,sizeof(cnt));    get_prime();    long long tmp,ret;    for(int i=2;i<=431;i++)    {        for(int j=0;prime[j]<=i;j++)        {            tmp=i;            ret=0;            while(tmp)            {                tmp=tmp/prime[j];                ret+=tmp;            }            cnt[i][prime[j]]=ret;//i的质因子数        }    }}int main(){    init();    long long ret,ans;    while(~scanf("%lld%lld",&n,&m))    {        ans=1;        for(int i=0;prime[i]<=n;i++)        {            ret=cnt[n][prime[i]]-cnt[m][prime[i]]-cnt[n-m][prime[i]];//c(n,m)=n!/((n-m)!m!),把对应因子个数相减,我们就得到了c(n,m)分解的结果            ans*=(ret+1);        }        printf("%lld\n",ans);    }    return 0;}

 

Divisors_组合数因子个数