首页 > 代码库 > POJ 1840 Eqs(hash)
POJ 1840 Eqs(hash)
题意 输入a1,a2,a3,a4,a5 求有多少种不同的x1,x2,x3,x4,x5序列使得等式成立 a,x取值在-50到50之间
直接暴力的话肯定会超时的 100的五次方 10e了都 然后可以考虑将等式变一下形 把a1*x1^3+a2*x2^3移到右边 也就是-(a1*x1^3+a2^x2^3)=a3*x3^3+a4*x4^3+a5*x5^3
考虑到a1*x1^3+a2^x2^3的最大值50*50^3+50*50^3=12500000 这个数并不大 可以开这么大的数组把每个结果出现的次数存下来 又因为结果最小可能是负的12500000 负数不能做数组的下标 加上个12500000*2就行了 这样分别枚举左右两边 把左边出现过的结果都存在一个数组里面 再枚举右边 没出现一次结果 答案就加上前面这个结果出现的次数 枚举完就出现答案了
#include<cstdio> #include<cstring> using namespace std; const int maxs = 50 * 50 * 50 * 50 * 4 + 10; unsigned short cnt[maxs]; int main() { int a1, a2, a3, a4, a5, sum,ans=0; scanf ("%d%d%d%d%d", &a1, &a2, &a3, &a4, &a5); for (int x1 = -50; x1 <= 50; ++x1) { if (x1 == 0) ++x1; for (int x2 = -50; x2 <= 50; ++x2) { if (x2 == 0) ++x2; sum = (a1 * x1 * x1 * x1 + a2 * x2 * x2 * x2) * (-1); if (sum < 0) ++cnt[sum + maxs]; else ++cnt[sum]; } } for (int x3 = -50; x3 <= 50; ++x3) { if (x3 == 0) ++x3; for (int x4 = -50; x4 <= 50; ++x4) { if (x4 == 0) ++x4; for (int x5 = -50; x5 <= 50; ++x5) { if (x5 == 0) ++x5; sum = (a3 * x3 * x3 * x3 + a4 * x4 * x4 * x4 + a5 * x5 * x5 * x5) ; if (sum < 0) sum += maxs; ans += cnt[sum]; } } } printf ("%d\n", ans); return 0; }
Eqs
Description
Consider equations having the following form:
a1x13+ a2x23+ a3x33+ a4x43+ a5x53=0
The coefficients are given integers from the interval [-50,50].
It is consider a solution a system (x1, x2, x3, x4, x5) that verifies the equation, xi∈[-50,50], xi != 0, any i∈{1,2,3,4,5}.
Determine how many solutions satisfy the given equation.
a1x13+ a2x23+ a3x33+ a4x43+ a5x53=0
The coefficients are given integers from the interval [-50,50].
It is consider a solution a system (x1, x2, x3, x4, x5) that verifies the equation, xi∈[-50,50], xi != 0, any i∈{1,2,3,4,5}.
Determine how many solutions satisfy the given equation.
Input
The only line of input contains the 5 coefficients a1, a2, a3, a4, a5, separated by blanks.
Output
The output will contain on the first line the number of the solutions for the given equation.
Sample Input
37 29 41 43 47
Sample Output
654
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。