首页 > 代码库 > 数据结构与算法问题 单源最短路径 浙大OJ

数据结构与算法问题 单源最短路径 浙大OJ

题目描述:
给你n个点,m条无向边,每条边都有长度d和花费p,给你起点s终点t,要求输出起点到终点的最短距离及其花费,如果最短距离有多条路线,则输出花费最少的。
输入:
输入n,m,点的编号是1~n,然后是m行,每行4个数 a,b,d,p,表示a和b之间有一条边,且其长度为d,花费为p。最后一行是两个数 s,t;起点s,终点t。n和m为0时输入结束。
(1<n<=1000, 0<m<100000, s != t)
输出:
输出 一行有两个数, 最短距离及其花费。
样例输入:
3 2
1 2 5 6
2 3 4 5
1 3
0 0

样例输出:

9 11


代码:

#include <iostream>
using namespace std;
const int max = 65535;
typedef struct graph
{
	int vex[1000];
	int weight[1000][1000]; //路径长度
	int cost[1000][1000];   //花费
	int numvex, numedge;
}graph;

void create(graph * &g)   //生成图
{
	int i,w,c,j,k;
	cin >> g->numvex >> g->numedge;
	for (i = 0; i < g->numvex; i++)
		for (j = 1; j <= g->numvex; j++)
		{
			g->weight[i][j] = max;
			g->cost[i][j] = max;

		}
	for (k = 0; k < g->numedge; k++)
	{
		cin >> i >> j >> w >> c;
		g->weight[i][j] = w;
		g->cost[i][j] = c;
		g->weight[j][i] = g->weight[i][j];
		g->cost[j][i] = g->cost[i][j];

	}
}

void mydijkstra(graph * &g,int start,int end)  //Dijkstra算法
{
	int mark1[1000],mark2[1000];
	int dist1[1000],dist2[1000];
	int i, j, k1,k2, min1,min2;
	for (i = 1; i <= g->numvex; i++)
	{
		dist1[i] = max;
		dist2[i] = max;
	}
	for (i = 1; i <= g->numvex; i++)
	{
		mark1[i] = 0;
		mark2[i] = 0;
		dist1[i] =g->weight[start][i];
		dist2[i] = g->cost[start][i];
	}
	mark1[start] = 1;
	mark2[start] = 1;
	dist1[start] = max;
	dist2[start] = max;
	for (i = 1; i < g->numvex; i++)
	{
		min1 = max;
		min2 = max;
		j = 1;
		while (j <= g->numvex)
		{
			if (!mark1[j] && dist1[j] < min1)
			{
				min1= dist1[j];
				k1= j;
			}
			if (!mark2[j] && dist2[j] < min2)
			{
				min2 = dist2[j];
				k2= j;
			}
			j++;
		}
		mark1[k1] = 1;
		dist1[k1] = min1;
		mark2[k2] = 1;
		dist2[k2] = min2;
		for (j = 1; j <= g->numvex; j++)
		{
			if (!mark1[j] && dist1[j] > dist1[k1] + g->weight[k1][j])
				dist1[j] = dist1[k1] + g->weight[k1][j];
			if (!mark2[j] && dist2[j] > dist2[k2] + g->cost[k2][j])
				dist2[j] = dist2[k2] + g->cost[k2][j];
		}
	}
	cout << dist1[end];
	cout << " ";
	cout << dist2[end];
}

int main()
{
	int start, end;
	graph *g = new graph;
	create(g);
	cin >> start >> end;
	if (start == 0 & end == 0)
		return 0;
	mydijkstra(g, start, end);
	system("pause");
	return 0;
}