首页 > 代码库 > 【hihocoder#1413】Rikka with String 后缀自动机 + 差分

【hihocoder#1413】Rikka with String 后缀自动机 + 差分

题目链接:http://hihocoder.com/problemset/problem/1413

 

这个题非常的劲!

首先可以发现,每次只变换一个字符为#,所以每次答案一定会得到相应的包含#的答案,而这个方案是可以直接计算出来的。

假设是$S[i]=$#则会得到$i*(N-i+1)$的子串数。

所以每次的答案可以表示为$sum[root]+i*(N-i+1)-ans[i]$,其中$ans[i]$表示严格经过$i$位置的本质不同的子串,严格的意义即这个本质不同的子串有且仅有一次,且经过$i$;

所以问题就转化为如何求出$ans[1..N]$

然后如何找到本质不同的经过$i$的子串,考虑利用后缀自动机;

问了 abclzr队长 ,可以考虑存出每个$Parent$树中的节点的$Right$集合,这样再进行递推,就可以搞出答案,但实际上并不需要存出全部的$Right$集合,只需要记录每个节点的$Right$集合的最左最右端点。

这样,对于一个子串是否严格跨越$i$,就可以利用右端-距离+1以及左端来判断是否严格跨越。

然后每个节点代表了多个子串,把这些子串一起处理,对答案的贡献就相当于是区间加上一个等差数列,对$ans[]$二阶差分后可以$O(N)$出解。

其实也可以用线段树/树状数组维护,树状数组需要差分,而且构造两个比较好写,线段树只要支持区间加,单点加,区间和即可。

 

给出一下官方题解:

技术分享

 

Code:

技术分享
#include<iostream>#include<cstdio>#include<cmath>#include<algorithm>#include<cstring>using namespace std;#define LL long long#define MAXN 600010int N;char S[MAXN];namespace SAM{    int son[MAXN<<1][27],par[MAXN<<1],len[MAXN<<1],size[MAXN<<1],l[MAXN<<1],r[MAXN<<1];    int root,last,sz;    #define INF 0x7fffffff    inline void Init() {root=last=sz=1;}    inline void Extend(int c)    {        int cur=++sz,p=last;        len[cur]=len[p]+1; size[cur]=1;        while (p && !son[p][c]) son[p][c]=cur,p=par[p];        if (!p) par[cur]=root;        else            {                int q=son[p][c];                if (len[p]+1==len[q]) par[cur]=q;                else                    {                        int nq=++sz; l[nq]=INF,r[nq]=0;                        memcpy(son[nq],son[q],sizeof(son[nq]));                        par[nq]=par[q]; len[nq]=len[p]+1;                        while (p && son[p][c]==q) son[p][c]=nq,p=par[p];                        par[cur]=par[q]=nq;                    }            }        l[cur]=r[cur]=len[cur];        last=cur;    }    inline void Build() {Init(); for (int i=1; i<=N; i++) Extend(S[i]-a+1);}    int st[MAXN],id[MAXN<<1];    LL sum[MAXN<<1],ans[MAXN];    inline void Pre()    {        for (int i=1; i<=sz; i++) st[len[i]]++;        for (int i=1; i<=N; i++) st[i]+=st[i-1];        for (int i=1; i<=sz; i++) id[st[len[i]]--]=i;        for (int i=sz; i>=1; i--)            {                int x=id[i];                l[par[x]]=min(l[par[x]],l[x]);                r[par[x]]=max(r[par[x]],r[x]);                for (int j=1; j<=26; j++)                    sum[x]+=sum[son[x][j]];                sum[x]++;            }        sum[root]--;        for (int i=sz; i>=1; i--)            {                int x=id[i];                if (r[x]-len[x]+1<=l[x])                    {                        int L=r[x]-len[x]+1,R=min(r[x]-len[par[x]],l[x]),Len=R-L+1;                        if (L<=R) ans[L]++,ans[R+1]-=Len+1,ans[R+2]+=Len;                        L=R+1,R=l[x];                        if (L<=R) ans[L]+=Len,ans[L+1]-=Len,ans[R+1]-=Len,ans[R+2]+=Len;                    }            }        for (int i=1; i<=N; i++) ans[i]+=ans[i-1];        for (int i=1; i<=N; i++) ans[i]+=ans[i-1];//        printf("%d\n",sum[root]);    }}using namespace SAM;int main(){    scanf("%d%s",&N,S+1);    SAM::Build(); SAM::Pre();    for (int i=1; i<=N; i++) printf("%lld ",(LL)i*(N-i+1)+sum[root]-ans[i]);    return 0;}/*10abcabcabdc*/
hihocoder challenge 24 C

 

【hihocoder#1413】Rikka with String 后缀自动机 + 差分