首页 > 代码库 > hihocoder #1449 : 后缀自动机三·重复旋律6

hihocoder #1449 : 后缀自动机三·重复旋律6

 

#1449 : 后缀自动机三·重复旋律6

时间限制:15000ms
单点时限:3000ms
内存限制:512MB

描述

小Hi平时的一大兴趣爱好就是演奏钢琴。我们知道一个音乐旋律被表示为一段数构成的数列。

现在小Hi想知道一部作品中所有长度为K的旋律中出现次数最多的旋律的出现次数。但是K不是固定的,小Hi想知道对于所有的K的答案。

解题方法提示

小Hi:上次我们已经学习了后缀自动机了,今天我们再来解决一个用到后缀自动机的问题。

小Ho:好!那我们开始吧!

小Hi:现在我们要对K=1..length(S)求出所有长度为K的子串中出现次数最多的子串的出现次数。小Ho你有什么想法么?

小Ho:我有一个Naive的想法。在上上周我们已经知道对于SAM中的一个状态st,endpos(st)就是st这个状态包含的子串在S中的所有结束位置(st包含所有子串都具有相同的结束位置集合)。每个不同的结束位置就对应了一次出现次数。所以如果我们能在构造SAM的过程中把endpos也都求出来,应该就能解决这个问题了。

小Hi:你这个思路不错,但是复杂度有些高。我们用|endpos(st)|表示endpos(st)的大小。那么对于一个状态st,|endpos(st)|最坏可能到达O(length(S))的级别,所有状态的|endpos(st)|之和最坏也可能达到O(length(S)^2)级别。

小Hi:比如对于S="aaaaa",其状态如下,容易发现Σ|endpos(st)| = 1 + 2 + 3 + ...。

状态子串endpos
S空串 
1a{1,2,3,4,5}
2aa{2,3,4,5}
3aaa{3,4,5}
4aaaa{4,5}
5aaaaa{5}

小Ho:所以如果我们对每个状态维护endpos的话,复杂度至少也是O(length(S)^2)的哦?那我们能不能只维护endpos(st)的大小,即|endpos(st)|,而不维护具体的endpos(st)呢?就像我们在上周只维护了maxlen(st)和minlen(st),而不维护具体的substrings(st)。

小Hi:你这个想法也很不错。可惜如果用上周的增量法建SAM时维护|endpos(st)|的话,额外的代价有点高。举个例子,假设我们已经建好了S="aaaaa"的SAM:

状态子串endpos|endpos|
S空串  
1a{1,2,3,4,5,6}5
2aa{2,3,4,5,6}4
3aaa{3,4,5,6}3
4aaaa{4,5,6}2
5aaaaa{5,6}1

当我们增加一个字符‘a‘,建立S="aaaaaa"的SAM:

状态子串endpos|endpos|
S空串  
1a{1,2,3,4,5,6}6
2aa{2,3,4,5,6}5
3aaa{3,4,5,6}4
4aaaa{4,5,6}3
5aaaaa{5,6}2
6aaaaaa{6}1

你会发现前面的状态1-5都需要修改,它们的|endpos|都增加了1。

小Ho:所以我们如果维护|endpos(st)|的话,最坏情况下复杂度又会是O(length(S)^2)。那我们该怎么办呢?

小Hi:我们要换个思路,不追求在构造SAM的过程中同时把|endpos(st)|算出来。而是先构造SAM,再单独把每个状态的|endpos(st)|算一遍。还是以S="aabbabd"为例。

技术分享

小Hi:这次我们不考虑Transition Function,只留下Suffix Links。此外,如果一个状态能接受(也就是包含)S的某个前缀的话,我们就把这个状态标记成绿色。例如状态4包含"aabb",状态7包含"aabbab"。

技术分享

状态子串endpos
S空串{0,1,2,3,4,5,6}
1a{1,2,5}
2aa{2}
3aab{3}
4aabb,abb,bb{4}
5b{3,4,6}
6aabba,abba,bba,ba{5}
7aabbab,abbab,bbab,bab{6}
8ab{3,6}
9aabbabd,abbabd,bbabd,babd,abd,bd,d{7}

小Hi:根据上上周基本概念中介绍的内容,我们知道Suffix Links把SAM中的所有状态连成了一棵树,并且父子(祖孙)之间的endpos集合有包含关系,非祖孙之间的endpos交集为空集。(还记得这个定理吗?对于S的两个子串s1和s2,不妨设length(s1) <= length(s2),那么 s1是s2的后缀当且仅当endpos(s1) ⊇ endpos(s2),s1不是s2的后缀当且仅当endpos(s1) ∩ endpos(s2) = ∅)。我们能不能"自底向上"求出所有状态的|endpos(st)|呢?

小Ho:好像有点意思。你继续讲。

小Hi:我们从2个具体的例子入手来分析这个问题。第一个例子是状态8,假设我们要求|endpos(8)|。我们知道状态8有两个儿子分别是状态3和状态7(即slink[7]=slink[3]=8),其中endpos(3)={3}, endpos(7)={6},这时|endpos(8)|是多少?

小Ho:看上去endpos(8)=endpos(3) ∪ endpos(7)。所以|endpos(8)| = |endpos(7)| + |endpos(3)|?

小Hi:我们再看一个例子,状态1,假设我们要求|endpos(1)|。我们知道状态1有两个儿子分别是状态2和状态6,其中endpos(2)={2}, endpos(6)={5},这时|endpos(1)|是多少?

小Ho:endpos(1)是{1, 2, 5},并不是endpos(2) ∪ endpos(6) = {2, 5},多了一个元素1。

小Hi:通过这两个例子你有什么思路么?

小Ho:我们明白了。一个状态st对应的|endpos(st)|至少是它儿子的endpos大小之和。这一点还是比较容易证明的。假设x和y是st的两个儿子,那么根据Suffix Link的定义,我们知道st中的子串都是x中子串的后缀,也是y中子串的后缀。所以endpos(st) ⊇ endpos(x) 并且 endpos(st) ⊇ endpos(y)。又根据Suffix Link的定义我们知道x中的子串肯定不是y中子串的后缀,反之亦然,所以endpos(x) ∩ endpos(y) = ∅。所以|endpos(st)| >= |endpos(x)| + |endpos(y)|。

小Hi:那么|endpos(st)|可能比st儿子的endpos大小之和大多少呢?

小Ho:最多就大1。并且大1的情况当且仅当st是上文提到的绿色状态,即st包含S的某个前缀时才发生。我们分析endpos(1)={1, 2, 5}就会发现,它比endpos(2) ∪ endpos(6) = {2, 5}多出来的结束位置1的原因就是状态1还包含S的长度为1的前缀"a"。更一般的情形是如果某个状态st包含S的一个前缀S[1..l],那么一定有l∈endpos(st),并且l不能从st的儿子中继承过来。这时就需要+1。

小Hi:没错。那么我们如何判断哪些状态应该标记成绿色状态呢?

小Ho:可以在构造SAM的时候顺手做了。回顾我们构造SAM的算法,当新加入一个字符的时候,我们至少会新建一个状态z(还可能新建一个状态y),这个状态z一定是绿色状态(y一定不是)。

小Hi:没错,我们回顾一下。先构造SAM,顺手把绿色状态标记出来。然后再对Suffix Link连成的树"自底向上"求出每一个状态的|endpos(st)|,这一步"自底向上"可以通过拓扑排序完成,我们很早之前就讲过,不再赘述。

小Ho:求出每一个状态的|endpos(st)|后,我们还需要求出每个长度的子串最多出现了多少次。我对这一步还有疑问。假设ans[l]表示长度为l的子串最多出现的次数。我的想法是对于每个状态st,都要循环一遍,利用|endpos(st)|更新ans[minlen(st)] ... ans[maxlen(st)]的值。这一步复杂度好像又是O(length(S)^2)的,这不是功亏一篑了吗?我写的伪代码如下。

FOREACH State st:FOR i = minlen(st) .. maxlen(st):    ans[i] = max(ans[i], |endpos(st)|)

小Hi:你提的这个问题很好。这是我们最后要解决的一个问题了。值得注意的是ans[1], ans[2], ... ans[length(S)]一定是一个单调递减序列。所以我们对于每个状态st,只需要更新ans[maxlen(st)]。之后令i = length(S)-1 .. 1,从后向前扫描一遍,令ans[i] = max(ans[i], ans[i+1]),即可。伪代码如下,你仔细体会一下。

FOREACH State st:    ans[maxlen(st)] = max(ans[maxlen(st)], |endpos(st)|)FOR i = length(S) - 1 .. 1:    ans[i] = max(ans[i], ans[i+1])

输入

共一行,包含一个由小写字母构成的字符串S。字符串长度不超过 1000000。

输出

共Length(S)行,每行一个整数,表示答案。

样例输入
aab
样例输出
2
1
1

代码:

#include<algorithm>#include<iostream>#include<cstring>#include<cstdio>//by NeighThornusing namespace std;const int maxn=2000000+5;int last=1,tail=1,ans[maxn],cnt[maxn],out[maxn],Min[maxn],Max[maxn],nxt[maxn][26],fail[maxn];char s[maxn];inline void build(char *s){	while(*s){		int p=last,t=++tail,c=*s++-‘a‘;		Max[t]=Max[p]+1;cnt[t]=1;		while(p&&!nxt[p][c])			nxt[p][c]=t,p=fail[p];		if(p){			int q=nxt[p][c];			if(Max[q]==Max[p]+1)				fail[t]=q,Min[t]=Max[q]+1;			else{				int k=++tail;				fail[k]=fail[q];				fail[t]=fail[q]=k;				Max[k]=Max[p]+1;				Min[q]=Max[k]+1;				Min[t]=Max[k]+1;				Min[k]=Max[fail[k]]+1;				memcpy(nxt[k],nxt[q],26*sizeof(int));				while(p&&nxt[p][c]==q)					nxt[p][c]=k,p=fail[p];			}		}		else			fail[t]=Min[t]=1;		last=t;	}}inline void calc(void){	for(int i=1;i<=tail;i++)		out[fail[i]]++;	int hd=1,ta=0,len=strlen(s),q[maxn];	for(int i=1;i<=tail;i++)		if(!out[i]) q[++ta]=i;	while(hd<=ta){		int top=q[hd++];		cnt[fail[top]]+=cnt[top];		out[fail[top]]--;		if(!out[fail[top]])			q[++ta]=fail[top];	}	for(int i=1;i<=tail;i++)		ans[Max[i]]=max(ans[Max[i]],cnt[i]);	for(int i=len-1;i>=1;i--)		ans[i]=max(ans[i+1],ans[i]);	for(int i=1;i<=len;i++)		printf("%d\n",ans[i]);}signed main(void){	scanf("%s",s);build(s);calc();	return 0;}

  


$By$  $NeighThorn$

hihocoder #1449 : 后缀自动机三·重复旋律6