首页 > 代码库 > 机器学习——树回归
机器学习——树回归
线性回归创建模型需要拟合所有的样本点(局部加权线性回归除外)。当数据拥有众多特征并且特征之间关系十分复杂的时候,构建全局模型的想法就显得太难了,也略显笨拙。而且,实际生活中很多问题都是非线性的,不可能使用全局限性模型来拟合任何数据。
一种可行的方法是将数据集切分成很多份易建模的数据,然后再利用线性回归技术来建模。如果首次切分之后仍然难以拟合线性模型就继续切分。
决策树是一种贪心算法,它要在给定时间内做出最佳选择,但是并不关心能否达到全局最优。
CART(classification and regression trees,分类回归树)
之前使用过的分类树构建算法是ID3,ID3决策树学习算法是以信息增益为准则来选择划分属性。ID3的做法是每次选取当前最佳的特征来分割数据,并按照该特征的所有可能取值来切分。也就是说,如果一个特征有4种取值,那么数据将被切成4份。一旦按某特征切分后,该特征在之后的算法执行过程中将不会再起作用,所以所以有观点认为这种切分方式过于迅速。另外一种方法是二元切分法,即每次把数据集切成两份。如果数据的某特征值等于切分所要求的值,那么这些数据就进入树的左子树,反之则进入树的右子树。
ID3算法还存在另一个问题,它不能直接处理连续性数据。只有事先将连续特征转换成离散型,才能在ID3算法中使用。
CART算法使用二元切分来处理连续型变量。对CART稍作修改就可以处理回归问题。CART决策树使用“基尼指数”来选择划分属性,基尼值是用来度量数据集的纯度。
机器学习——树回归
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。