首页 > 代码库 > poj 1094 Sorting It All Out (拓扑排序)
poj 1094 Sorting It All Out (拓扑排序)
Sorting It All Out
Time Limit: 1000MS | Memory Limit: 10000K | |
Total Submissions: 27929 | Accepted: 9655 |
Description
An ascending sorted sequence of distinct values is one in which some form of a less-than operator is used to order the elements from smallest to largest. For example, the sorted sequence A, B, C, D implies that A < B, B < C and C < D. in this problem, we will give you a set of relations of the form A < B and ask you to determine whether a sorted order has been specified or not.
Input
Input consists of multiple problem instances. Each instance starts with a line containing two positive integers n and m. the first value indicated the number of objects to sort, where 2 <= n <= 26. The objects to be sorted will be the first n characters of the uppercase alphabet. The second value m indicates the number of relations of the form A < B which will be given in this problem instance. Next will be m lines, each containing one such relation consisting of three characters: an uppercase letter, the character "<" and a second uppercase letter. No letter will be outside the range of the first n letters of the alphabet. Values of n = m = 0 indicate end of input.
Output
For each problem instance, output consists of one line. This line should be one of the following three:
Sorted sequence determined after xxx relations: yyy...y.
Sorted sequence cannot be determined.
Inconsistency found after xxx relations.
where xxx is the number of relations processed at the time either a sorted sequence is determined or an inconsistency is found, whichever comes first, and yyy...y is the sorted, ascending sequence.
Sorted sequence determined after xxx relations: yyy...y.
Sorted sequence cannot be determined.
Inconsistency found after xxx relations.
where xxx is the number of relations processed at the time either a sorted sequence is determined or an inconsistency is found, whichever comes first, and yyy...y is the sorted, ascending sequence.
Sample Input
4 6 A<B A<C B<C C<D B<D A<B 3 2 A<B B<A 26 1 A<Z 0 0
Sample Output
Sorted sequence determined after 4 relations: ABCD. Inconsistency found after 2 relations. Sorted sequence cannot be determined.
思路:根据矛盾优先原则,即只要出现矛盾就结束程序,输出答案;然后再没有矛盾的基础上进行拓扑排序看能否得出它们之间关系;最后,若以上两者均没有结果,则是条件不足。同时,我们要输入一个关系进行一次判断。
在程序中,每次拓扑后若满足合法的拓扑条件,就记录答案。最后判断是否有矛盾关系即可。
#include"stdio.h" #include"string.h" #include"vector" #include"queue" #include"iostream" #include"algorithm" using namespace std; #define N 1000 #define M 26 vector<int>g[M]; //记录拓扑关系 int pre[M],n,m,flag,t; int mark[M]; 标记字符是否出现及是否使用过 char ans[M+5]; 记录答案 void top_sort(int k) { t=k+1; int i,j,u,v,tmp; queue<int>q; memset(pre,0,sizeof(pre)); memset(mark,0,sizeof(mark)); for(i=0;i<n;i++) { if(g[i].size()!=0) mark[i]=1; //等于1代表该字符出现 for(j=0;j<g[i].size();j++) { v=g[i][j]; mark[v]=1; pre[v]++; } } j=0; while(1) { tmp=0; for(i=0;i<n;i++) { if(pre[i]==0&&mark[i]==1) { mark[i]=-1; //字符已经用过一次 u=i; q.push(u); tmp++; } } if(tmp==0) //排序结束标志 break; else if(tmp==1) //条件合法,记录答案 ans[j++]='A'+u-0; while(!q.empty()) { u=q.front(); q.pop(); for(i=0;i<g[u].size();i++) { v=g[u][i]; pre[v]--; } } } for(tmp=i=0;i<n;i++) if(pre[i]) tmp++; if(tmp>0) //出现该情况肯定是出现矛盾 flag=2; else if(j==n) flag=1; ans[j]='\0'; } int main() { char s[10]; int i,u,v; while(scanf("%d%d",&n,&m),n||m) { flag=0; for(i=0;i<M;i++) g[i].clear(); for(i=0;i<m;i++) { scanf("%s",s); if(!flag) { u=s[0]-'A'; v=s[2]-'A'; g[u].push_back(v); top_sort(i); //进行拓扑排序 } } if(flag==1) printf("Sorted sequence determined after %d relations: %s.\n",t,ans); else if(flag==2) printf("Inconsistency found after %d relations.\n",t); else printf("Sorted sequence cannot be determined.\n"); } return 0; }
poj 1094 Sorting It All Out (拓扑排序)
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。